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Presentation Outline
• Objectives and motivation
• Experimental Updates

1. Mineralogy Control on CO2 Accessibility on 
Micropores of Shales for CCUS Application

2. Acoustic Measurements with CO2 saturation
3. NMR studies of CO2-saturated brine
4. Direct-shear experiments on shale permeability

• Accomplishments to date
• (Near-) Future work
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Objectives

• Determine the behavior of intact and fractured 
caprocks when exposed to supercritical CO2 at 
elevated pressures

• Quantify adsorption and acoustic properties 
of shales with sorbed CO2

• Provide framework for monitoring, verification 
and accounting (MVA) efforts of CO2
sequestration and its effect on caprock
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(1) CO2 Accessibility in Shale Micropores

• Gas adsorption to characterize nanopores
• Samples Used
• Analysis methods and Results
• Application to CO2 storage
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Storage capacity estimates:
– Economically feasible CO2 capacity of Utica + 

Marcellus + Antrim + Devonian Ohio ≈ 50 Gt
(Godec et al, 2014)

– Theoretical CO2 capacity of Utica = 10 Gt 
(Godec et al, 2014)

– 80% storage capacity by sorption 
(Ambrose et al, 2012)

Motivation
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P. Klobes and K. Meyer (BAM, Germany)
nanopores

Typically, N2
gas is used

Kinetic diameters: CO2 (0.33 nm) <  N2 (0.36 nm). 
We use CO2 to access smaller micropores than those accessible to N2

Pore characterization methods 
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• Recommended practice (IUPAC 1985 & IUPAC 2015)
• Adapted N2 adsorption to characterize shales, also compared 

to WIP (Kuila, 2013)
• Limited accessibility for N2 in immature oil window samples 

due to blockage by bitumen (Saidian, 2015)
• Limited pore accessibility dependent on mineralogy and gas 

type; preferential CO2 uptake in OM (Kumar, 2016)
• In presence of  water, preferential uptake of  CO2 only in OM 

not in clay minerals (Kumar, 2016)
• N2 - and  CO2- derived PSD on shales with 2-21% TOC

Previous studies
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• Standard clay samples – benchmarking 
– Illite, Illite-smectite, Na-rich montmorillonite

• Producing shales in North America
– Bakken (7-21% TOC), Utica (2% TOC) and Niobrara (3-5% TOC) 

• Analog to caprock of  CO2 storage site in the Norwegian 
North Sea 
– Agardhfjellet (12% TOC), Rurikfjellet (2% TOC)
– CCS candidates

Samples Used

Center for Rock Abuse 8Joewondo and Prasad, 2018



• Require high pressure setup 
to measure full isotherm

• P0 > 1 atm

N2 at 77K CO2 at 273 K

• Diffusional limitations of  N2
molecules in narrow pores

• Underestimate micropores

Measured adsorption isotherm
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Bakken

Niobrara

Utica

Agardhfjellet

Rurikfjellet

Note: Opposite trend of N2- and CO2- derived pore structures;
Mudrocks with high TOC have higher CO2 storage potential

N2 CO2

TOC controls on micropore volume
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Micropore volume measured in this work
Utica = 2E-3 cc/g Agardhfjellet = 11E-3 cc/g

Assume micropores are filled with CO2
CO2 density 0.6 g/cc (30 C, 8 Mpa) (van der Meer 2005)
Shale density 2.4 g/cc

Calculated CO2 storage capacity in 1 m3 of  shales from this work
Utica (2% TOC): 2.8 kgCO2 Agardhfjellet (12 % TOC): 15.8 kgCO2

Compare with Godec et al. (2014) for the same area:
Average thickness of  150 ft or 45.7 m (Refayee et al. 2016) 
Theoretical CO2 capacity of  Utica formation

19.7 GtCO2 (this work) and 10 GtCO2 (Godec et al. 2014)

Implications for Storage Capacity
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Comparing CO2 and N2- accessible volumes
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Surface Area and Clay Content
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• OM pores are hydrophobic
• OM pore development starts at the onset of oil window
• Presence of bitumen free OM pores
• Cryogenic N2 blocked by nano-sized pores in organic matter

0 0.1 0.2 0.3 0.4 0.5
Clay fractional weight

0

4

8

12

16

20

N
2 B

ET
 S

SA
 (m

2/g
)

1
14

11005

2

5 16

7219

3

13
LG

1

44

TOC weight %
0 (Siltstone)
6 to 13
13 to <17

y = 30.5 x
R2 = 0.98

0 0.1 0.2 0.3 0.4 0.5
Clay fractional weight

0

4

8

12

16

20

H
2O

 B
ET

 S
SA

 (m
2/g

)

1

511005

14

13

7219

16
LG

TOC weight %
0 Siltstone
6 to 13
13 to <17

y = 31.7 x
R2 = 0.978

0 0.1 0.2 0.3 0.4 0.5
Clay fractional weight

0

10

20

30

40

C
6H

14
 B

ET
 S

SA
 (m

2/g
)

14

11005

1

5 16

7219

LG

13

2

1

344

TOC weight %
0 (Siltstone)
6 to 13
13 to <17

y = 32.2 x
R2 = 0.987

Nitrogen Water Hexane

Center for Rock AbuseKumar, 2016



Preferential sorption of fluids
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Quantification of  hydrophilic and 
hydrophobic pores of  shales

Preferential sorption of  fluids depends on polarity of  surfaces

Kumar, 2016



Sorption in shales with water
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Sorption in shales with water
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Illite: Water Imbibed Bakken: Water Imbibed 

CO2 sorption CO2 sorption 

OM

In presence of  water: Illite pores take up water; CO2 fills OM pores 

Kumar, 2016



Environmental Scanning Electron Spectroscopy 
(ESEM)

Spot Analysis
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Agardhfjellet from Svalbard 



Sorption in Zeolite 
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Without vacuum, N2-uptake is 
25% less than degassed sample

Joewondo and Pohl, 2018



Waveforms and Velocities with CO2
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Frequency and Velocities with CO2
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Ultrasonic Velocities
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Seismic Velocities
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• CO2-accessible micropore volume depends on TOC
• Need to complement N2 measurements with CO2 for CO2 storage 

capacity
• CO2 storage capacity increases with TOC
• CO2 storage capacity decreases in presence of  water (clay 

effect)

• Frequency content (seismic attenuation) is sensitive 
to gas content

• Fluid in micropores depends on mineralogy – should 
be accounted for in seismic inversion

Conclusions

Center for Rock Abuse 23



Synergy Opportunities
– Calibrate rock physics models with partial saturation due 

to mineralogy – dependent pore volumes and preferential 
fluid sorptions. Relevance: 4D seismic operations

– Investigate well log NMR signals for changes in fluid 
signatures versus changes in the rock due to rock –fluid 
interactions. Relevance: CCUS and Oil & Gas operations

– Joint acoustic –permeability changes with CO2 before and 
after shearing. Relevance: caprock changes with stress 
changes

– Imaging CO2 migration – student intern with SINTEF
24Center for Rock Abuse
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