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Presentation Notes
New 5 year project to take the tools, modeling frameworks
Work with development projects through CRADA’s
Support users of Toolset
Commercialization


Executive Summary

 Overview
*50+ personnel accelerating CCS technology understanding and development
*Engagement with International Test Center Network (ITCN) and ~50 Industrial/Academic
Stakeholders

e Industrial Collaborations
*CCSI? Supports 10 CO, Capture Program projects $60MM+ in total project value (TRL 3-7)
— Three DOCCSS projects, four Developers Testing at TCM, LLNL MECS Technology, UT
Austin AFS, UKy Process Control

«Additional external industrial agreements (executed or in progress)
— GE, ADA-ES, Test Centre Mongstad (TCM), SINTEF, Canada’s Oil Sands Innovation
Alliance (COSIA)

o Strategic Design of Experiments
sImproves model while optimizing experimental data collection
*Demonstrated success in MEA campaigns at NCCC and TCM

« DOCCSS Collaboration
*Materials Characterization > Equipment Design = Process Optimization
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Rapidly synthesize optimized
processes to identify promising
concepts
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l to reduce time for troubleshooting

CCSI?%: Accelerating Rate of RD&D

Quantify sources and effects of
uncertainty to guide testing & reach
larger scales faster

Better understand internal behavior
Stabilize the cost during

commercial deployment
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CCSI Toolset: New Capabilities for Modeling

Maximize the learning at each stage of technoloqy development

 Early stage R&D
— Screening concepts
— ldentify conditions to focus development
— Prioritize data collection & test conditions

* Pilot scale
— Ensure the right data is collected
— Support scale-up design

« Demo scale
— Design the right process
— Support deployment with reduced risk
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Complete
Toolset Available at
github.com/CCSI-Toolset

FOQUS - Framework for Optimization
and Quantification of Uncertainty and
Surrogates

3 Toolset Bundles:

CFD Models: High fidelity device scale
Computational Fluid Dynamics (CFD)
models

Oxy-Combustion Models: Boiler model
and a suite of equation-based models

Process Models: A suite of process
models implemented in gPROMS, Aspen
Custom Modeler, Aspen Plus and Aspen
Plus Dynamics
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Carbon Capiure Simulation for Industry Impact
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The Carbon Capture Simulation Initiative (CC31) Toolset is a suite of computational models for carbon capture equipment and design
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El Repositories 30 People 26

Finned repositaries

= FOQUus

FOGUS: Framewark far Optimization and
Gluantification of Uncerainty and Surrogates

@Frython *1 Ya

= Owy-CombustionModels_bundle

The Cxy-Combustion hModels package consists of
tweo primary components: & detailed boiler model
and a suite of equation-based models of the other
components of a complete oxycombustion pover
generati...
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Pull requests Issues Marketplace

Teams & Projects 1 Settings

= Processhdodels_bundle

& suite of process models implemented in both
Aspen Custom Maodeler and gPROMS Model

Builder, ag well as models implemented within
éspen Plus and &spen Plus Dynamics.

@ Makefile W1

= APCFramework

Unified framework, in MATLAE for application and
testing of advanced contral algorithms towards
efficient process operation and control
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Customize pinned repositories

CFDModels_bundle

High fidelity device scale Computational Fluid
Dynamics (CFDY models

@ hakefile

= iReveallite

automated reduced order model generation for
improved computational time
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Baseline Modeling Framework

Measurement
Uncertainty

Process UQ

. M ¢
A ) | Steady-State and Dynamic feasuremer
Scale Data . PrOceSS Model

Lab Scale « Measurement WWSC/Bench/Pllot
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Chemistry Model Kinetic model
Thermodynamic Transport Hydrodynamic Mass Transfer
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Integrated Multi-Scale Model Approach

| k|

% CO, Capture

Process Simulation
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Test Campaigns to Reduce Uncertainty

* Pilot Test Campaigns Are Costly!
 Uncertainty evaluated in the following models:
— Transport models (surface tension, viscosity, diffusivity)
— Thermodynamic models (density, VLE, heat capacity)
— Hydraulic models (pressure drop, holdup)
— Mass transfer models (mass transfer coefficients, interfacial area)
— Kinetic model

« Model Validation with Data and propagation of all parametric
uncertainties through the model

— UQ methodology is leveraged to improve models and test plans
 Optimize Campaign to Maximize Value...
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Required Experiments

po = (startingpoint)

Po
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Required Experiments

Po = (X0, Y0, Zo)

Po
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Required Experiments

Po = (X0, Y0, Zo)

Po
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Required Experiments

Po = (X0, Y0, Zo)
p1 = (X1, Y0, Zo)
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Po = (X0, Y0, Zo)
p1 = (X1, Y0, Zo)
P2 = (X1,Y1,2)

CCSI

Carbon Capture Simutation for Industry Impact
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Required Experiments

Po = (X0, Yo, Zo)
p1 = (X1, Y0, Z0)
P2 = (X1, ¥1,20)
pr = (X1, Y1, 71)

To get to next desired point, py:

# Tests ~ # Variables

p1 & p, may not be desired...
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# Test Runs

Traditional Design of Experiments*

800
I
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|

400
|

200
|

5 levels

 Brute force approach
» 3-5 increments for each variable

4 levels * Exponential increase in test runs as

3 levels

variables increase

How can we maximize value of a
practical test campaign?

We must minimize suboptimal

*Zero Engineering Insight
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Sequential Experimentation: Optimal Test Conditions
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Sequential Experimentation: Optimal Test Conditions

Optimal test
conditions

)

Initially-assumed
parameter
distributions

Batch Tests
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Sequential Experimentation: Optimal Test Conditions

Optimal test

conditions Outputs: Data
Initially-assumed Batch Tests
parameter
distributions
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Sequential Experimentation: Optimal Test Conditions
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Sequential Experimentation: Optimal Test Conditions

Optimal test

)

Initially-assumed
parameter
distributions
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Sequential Experimentation: Optimal Test Conditions

Optimal test
conditions
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Sequential Experimentation: Optimal Test Conditions

Optimal test

conditions | Outputs: Data
Initially-assumed _ B Botch Tests
par.f-.ime_ter Model Refinement
distributions

Outputs: Updated -
parameter distributions
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Effective Test Campaigns

« Campaign Progression Varying One Dimension
at a Time:

— INSUFFICIENT

# Test Runs

- Campaign Progression Varying All Dimensions S
at Once: S
— Possible with very accurate .
models/understanding... S
— But Higher Risk with higher dimensions
« Campaign Progression Varying Multiple N
Dimensions at a Time: 5 o :._',"a':-'.:,:*;.."f '? _
— Practical solution — facility-dependent " i T
— Less risky with more accurate models — more 5‘;._.,.# SR T
dimensions possible
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Effective Test Campaigns

Campaign Progression Varying One Dimension
at a Time:

— INSUFFICIENT

Campaign Progression Varying All Dimensions
at Once:

— Possible with very accurate
models/understanding...

— But Higher Risk with higher dimensions

Campaign Progression Varying Multiple
Dimensions at a Time:

— Practical solution — facility-dependent

— Less risky with more accurate models — more
dimensions possible
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Optimal Design of Experiments: NCCC Trial

Prior Distribution Posterior Distribution
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Optimal Design of Experiments: NCCC Trial

Prior Distribution Next iteration
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TCM: Bayesian Inference Continues to Improve Model

Sample No. represents variation
In input variables:

e Liquid Flowrate

e Flue Gas Flowrate

e Lean Loading

 CO, Percentage in Flue Gas

Capture Range

Width of 95% ClI

* 80-95% CO,

DoE Results

« Precision shown at 2" iteration —
~2 weeks

« Remaining uncertainty attributed
to thermodynamic model
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DOCCSS: LBNL Metal Organic Framework

e Material: Step Isotherm L
« Amine Functionalization results _“~ " "
In cooperative CO,, adsorption S
 Extremely rapid adsorption — A V*K'\ﬁ'wk'\

step change in loading
» Extremely rapid heat liberation 5~ S~ S

« Equipment o :
 Heat accumulation undermines 508
performance Yy L .'
 Bed breakthrough times canM [ kohema 4
increased by ~4X with ideal 0 ! = " ——t
dGSIgn t,=22.7 min Time (min) t,=80.4 min
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DOCCSS: PNNL CO,BOL System Optimization

Multi-scale modeling
— CO,BOL Solvent
— Equipment

— System

Parameter Reduction
— 100’s of variables - 41

System Analysis

— Lost work thermodynamic
Inefficiency

— Improvements to novel
CO,BOL system

— Fully propagated UQ
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DOCCSS: LLNL Reactor Geometry Optimization

e Triply Period Minimal Surface Structure
(TPMS)

« Adjacent, independent, interwoven flow
paths

e Can increase heat transfer per unit
surface area per by over 10x

« CCSI? classifying solvent
hydrodynamics

« Higher viscosity = more uniform flow
path — advantageous for non-agueous

« Understanding supports geometry

optlmlzatlon
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Technology Development Acceleration

« Many tech development programs incompletely integrated

 Involve sequential steps of experimentation modeling and design relying more on expert
judgment than a thorough utilization of available information

— Experimental programs exploring potential variations in conditions without full analysis
of existing information, key data needs
» inadequate focus on most effective use of time, resources to address key development questions
— Modeling programs based on single best fits to limited data sets. Suboptimal
consideration of..
» All scales of avallable data for models from fundamental scale to fully integrated plant design
» Best collection of data for creation of most accurate model,
* Ranges of possible values of fitting model parameters,
» Uncertainty analysis of predictions,
 |dentification of most critical gaps to reduce uncertainty
— Design typically limited by...
» Using a few isolated process conditions gleaned from limited experimental datasets
* Focused on high-performance steady state conditions

— Poor ability to understand process startup, shutdowns, dynamics and control issues essential
for optimize full design for all anticipated operating conditions

— Optimizations typically done by varying conditions around a presumed satisfactory base
de5|gn condition.
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Fully Integrated Modeling Experimentation Design and Optimization

S
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Carbon Capiure Simulation for Industry Impact

Models created from full utilization of available data
— at all scales; validated against all available data
Uncertainty quantification integral to model creation

— utilized to inform best choices of experimental program to reduce uncertainty, expand
predictive ability, focus on key design and optimization features

Experimental plans based on best use of prior data,

— Enables best choice of experimental program to reduce key model uncertainties, enable
design and optimization

Designs based on complete evaluation of potential variables, prediction of ranges of
potential design choices;

— key uncertainties quantified

Optimizations based on more complete understanding of design options and varying
conditions of operation, enables advanced process control.

CCSI2 applies this approach to carbon capture technology development.
-Toolset contains the essential components to apply to other tech developments.
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This Meeting — Examples of CCSI2 “FIMEDQO” Approach

e« CCSI Toolset developed in collaboration with large group of tech development
partners.

 Now being applied to broad range of Carbon Capture Tech Development projects
— From low-TRL programs to answer key guestions sooner

— To Large Scale Demonstrations (UT, UKy, NCCC, TCM) to focus high-cost test
programs on most valuable information to enable next scale design optimization
and experimentation.

Approach applicable to many capture technology developments
 Includes “Gold Standard” models for multiple capture technologies

Toolset provides key components to enable application far beyond capture
* You'll need to build your own models
» Toolset provides UQ, Integration, Optimization, Iteration capabilities
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For more information:
https://www.acceleratecarboncapture.orq/

For Toolset:
github.com/CCSI-Toolset

Michael S. Matuszewski, Associate Technical Director
Michael.Matuszewski@netl.doe.gov
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Presenter
Presentation Notes
New 5 year project to take the tools, modeling frameworks
Work with development projects through CRADA’s
Support users of Toolset
Commercialization

https://www.acceleratecarboncapture.org/
mailto:Michael.Matuszewski@netl.doe.gov
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