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Materials Background

Previous Work (NETL, DE-FE00004329)
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New Materials Working at Lower Temperature

Low temperature oxygen abstraction
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« Remove oxygen at lower
temperatures compared to the
earlier materials

» Work funded in 2015 by
CCEMC, Alberta, CAN K130115

|
]
o
T

_A0F

100 200 300 400 500 600 700 800
Temperature, °C

Mobley, P. D.; Peters, J. E.; Akunuri, N.; Hlebak, J.; Gupta, V.; Zheng, Q.; Zhou, S. J.; Lail, M.,
Utilization of CO, for Ethylene Oxide. Energy Procedia 2017, 114, 7154-7161




Market Potential: Carbon Monoxide

polycarbonate preservative, antimicrobial
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- CO produced has numerous applications - Industrial CO source could drive new

. More than 59 Mt of CO are used economic activity
annually - Significant CO stream

- Large and growing market for CO globally
($23 billion, 5.7% expected annual growth)




Evaluation of Material for EtO Selectivity

« Evaluated new materials in automated fixed-bed micro-
reactor

« MKS FTIR multi-gas analyzer
« GC-MS
» Probed optimal reaction conditions using DOE
 |dentified relatively low temperature region for operation
« Higher temperature than conventional EtO process

o 300° C

o 20 bar total pressure

o 1C,H,:2CO,

|.:; ‘|« FTIR Multi-

1 gas analyzer
results for
EtO

» Result
shown for
many cycles
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Comparison to Conventional EtO Production
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EtO Producers Current Production Processes

- METEOR™ EtO/glycol process technology, polyethylene (1,300 kt), ethylene
Dow Chemical dichloride/vinyl chloride monomer (730 k%

Shell MASTER Process, Shell OMEGA Process, mono-ethylene glycol (450 kt),
Shell Global styrene monomer (450 kt)

Couples EO/EG technology with its SénDox® catalysts.
Catalysts used at more than 100 EO/EG plants worldwide

Scientific Design

Chongterdtoonskul, A.; Schwank, J. W.; Chavadej, S. J. Mol Cat A 2013, 372 (175-182)
n Dellamorte, J. C.; Lauterbach, J.; Barteau, M. A. Catal. Today 2007, 120, 182-185



Market Potential: Ethylene Oxide

= Large and growing market for EtO
in North America and globally

= Ethylene oxide demand is over 24
Mt globally (~$40 billion USD)

— 14 most produced organic

chemical
Ethylene  Polyols, 3% Polythene

- gol/ot;aelrdaenmmejtrrl]d expected to grow Shcsil Ether!.\ \ . glycols, 2%
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GHG Reductions - Life-cycle Analysis (LCA)

= RTI’s technology enables CO, from
other sources to be utilized to produce

ethylene OXide Electricity . Refinery
.. Th IE ’ ‘ lransports ‘ Energy Carriers Prod
— Reduces CO, emissions from — I T ro l”m
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= A 350 kt production plant could reduce
CO, emissions by 1 Mt per annum
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Improving the Material

= Addition of promoters to the mixed-metal oxide for
increased activity for EtO production

= Optimization of the metal-oxide phases and support
for synergistic adsorption and mechanical properties
for better EtO selectivity

= Improve metal oxide—support interaction by selection

of:

— support materials

— particle size :

— porosity Vo i /‘/
_ ratio of metal-oxide phases on the surface or subsurface /|\!\}/\\|\.

of the catalyst | # R | % (/

= Changing the fabrication process conditions - = =

- e.g., calcination temperature /l/’\ \|\|>
IZONZIN

Target Requirement
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Framework for Project

“Novel Catalytic Process Technology for Utilization of CO, for Ethylene
Oxide and Propylene Oxide Production” (DE-FE0030678)

Characterizing and Refining Metal Oxide Extension to PO
Formulation (Tasks 2, 3) (Task 5)

Process Modeling and Technology
Assessments (Task 6, 8, 9)

Bench-Scale Evaluation (Task 4, 7)

Timeframe: BP1:10/1/17 to 09/30/18, BP2:10/1/18 to 09/30/19
Budget: BP1 $461,651 (DOE) + $100,000 (cost share)

BP2 $338,349 + $100,000 (cost share)
Total Budget = $1,000,000

RTI International - Dr. S. Jim Zhao, Principle Investigator
US DOE/ NETL — Steve Mascaro, Project Manager



Identifying MMO Phases by XRD

Normalized Intensity
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XRF confirmed quantities of metals anticipated in the MMQO’s

e 13488-91
e 1 3488-92
e 1 3488-94
e 13488-95
w1 3488-98

Mole ratio of M;/M, varied to elucidate importance in CO, reduction
Mole ratio to support varied to elucidate metal-support interactions

XRD confirmed common metal oxide phases
Small nanoparticle size of metal oxides
Low crystallinity of support phase in primary samples



Characterizing the MMO using pulsed CO,- Chemisorption

Experimental demonstration of CO, reduction
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Summary of CO, Reduction Findings

(a) 400 °C (b) 500 °C (c) 600 °C
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A metal/support interaction is conducive to oxygen abstraction from CO

The optimum metal oxide mole ratio for CO, reduction is approximately 0.25
Increasing the crystal size from ~30 to ~50 nm does not appear to have a significant
impact on CO, reduction

Chloride is neither a poison nor a promoter to CO, reduction

For this type of MMO, CO, reduction can be achieved at temperatures 500-600° C



Testing MMO'’s for Ethylene Epoxidation
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Previous Results

Effluent Comp. (vol%)
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Task 3 Results with micro-GC detection

(1) pretreated with 5% CO to reduce, (2) 5% CO,to oxidize, at
500°C, 20 bar. (3) Reaction with 25% CO,, 5% ethylene at 350°C
at 20 bar. (4) Oxidation with 5% O, at 500°C, 20 bar.
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« Observed CO, but very little ethylene oxide



Task 3 Results Repeated with FTIR detection

5% CO, to oxidize,
at 500° C, 20 bar

pretreatment with 2 CO,, 5% ethylene at
5% H, to reduce \ 350° C at 20 bar
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» Confirmed ethylene oxide not being produced



Possibility of Oxygen in the Reactor
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« Simulating the leak of oxygen into the reactor produces ethylene oxide



Thermodynamics of CO, Reduction/ Ethylene Epoxidation
co, TN CoH,
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« Thermodynamically favorable reactions can be postulated for both redox steps
« The cycle is not closed, probably why ethylene oxidation is not being observed



Conclusions and Future Directions

» Characterized mixed metal oxides for thermochemical CO, reduction
« |dentified formulation for CO, reduction between 500-600° C

« Confirmed the coO, coO
production of
COin
microreactor
testing under
process
conditions

« Met BP1
milestones for
characterization

[MaMb ] [MaMbOx }

« Baseline catalyst testing
shows inconsistencies in
transfer of oxygen derived
from CO, to ethylene to form
ethylene oxide

« Need to refine phase ) H.C
selection to meet /N 2 \ .
thermodynamic R R

requirements

« Have not yet met
BP1 milestone for
refinement of
MMO to show
higher EtO yield

Could apply existing CO,
reducing formulation to
other MT market
chemicals as alternative
to epoxides
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