

2018 NETL CO₂ Capture Technology Project Review Meeting

U.S. Department of Energy Cooperative Agreement Number: DE FE0029570

Low temperature process utilizing nanoengineered catalyst for olefin production from coal derived flue gas

8/20/2018

Principal Investigator: Amit Goyal Co-Principal Investigator: Jadid Samad DOE FPM: Sai Gollakota

Project overview

Goal: Develop novel nano-engineered catalysts for the production of ethylene (main product) and CO (Secondary product) from natural gas derived ethane and coal fired flue gas CO₂.

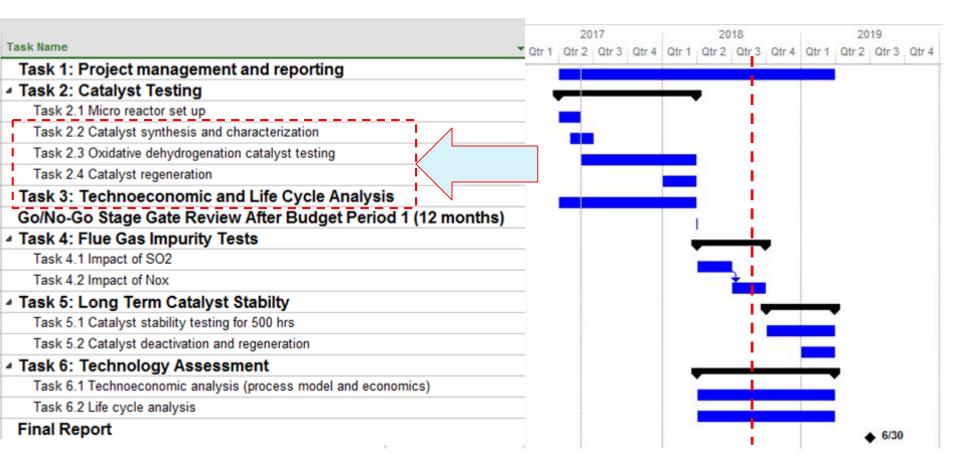
DOE/NETL Share: \$ 799,442 (80%) Sout

Southern Research: \$200,418 (20%)

Project duration: 2 years April 1, 2017-March 31, 2019

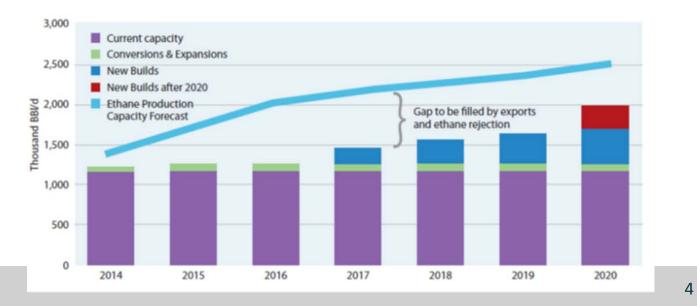
	Budget Period 1		Budget Period 2		Total Project				
		4/1/2017-3/3	31/2018	4/1/2018-3/31/2019		iotai rioject			
DOE Share	ŝ	398,617.00	80%	\$	400,825.00	80%	\$	799,442.00	80%
Cost Share	\$	100,209.00	20%	\$	100,209.00	20%	\$	200,418.00	20%
Total Cost	S	498,826.00		\$	501,034.00		\$	999,860.00	

Participants and Roles

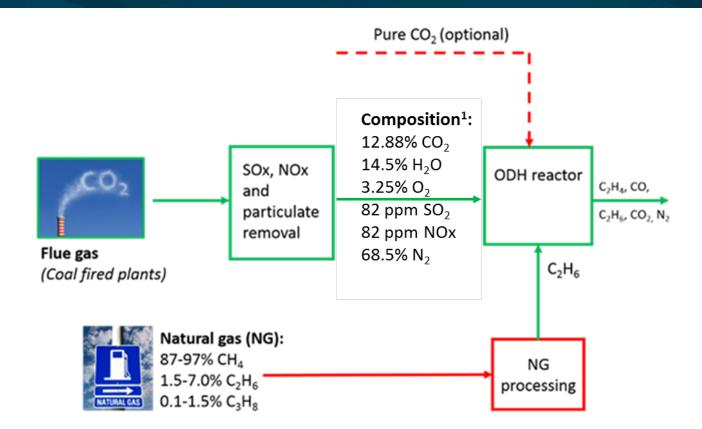

Southern Research (prime): Lab-scale reactor system design and commissioning, Product analysis, Catalysis Synthesis, characterization and Deactivation studies, Reports.

Catalyst consultant: Guidance on catalyst design, testing and industrial requirements for integration with utility and petrochemical sectors.

Utility Company: Guidance on flue gas characteristics, composition, heat integration with coal fired plant and opportunities to use other CO₂ streams within plant.


Project schedule and task summary

Six tasks, two budget periods.


Why ethylene ?

- Great target platform chemical due to-
 - □ Large production volume (150 million tons/year)
 - □Large energy consumption (5 quadrillion BTU/year)
 - □ Large CO₂ emission during production (180-200 million tons/year)
- □ Surplus ethane available in the U.S. is a low cost feedstock for ethylene production.
- Potential for CO₂ utilization in an otherwise CO₂ emitting process
- > Even small reduction of energy usage will have large impact due to large scale.

SR

Commercial embodiment

□ Produces ethylene and CO, two highly desirable platform chemicals

 \Box Direct environmentally regulated flue gas utilization with option to use captured CO₂

SR

¹Cost and Performance Baseline for Fossil Energy Plants, Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity,5 Revision. (<u>https://www.netl.doe.gov/File%20Library/Research/Energy%20Analysis/Publications/Rev3Vol1aPC_NGCC_final.pdf</u>)

Chemistry of the process

Oxidative dehydrogenation (ODH) reaction:

$$C_2H_6 + CO_2 = C_2H_4 + CO + H_2O \Delta H^\circ = 134 \text{ kJ/mol.}$$

□ CO₂ acts as a mild oxidant in the ODH process. Oxidation power: O₂ (105) > H₂O (3) > CO₂ (1) > H₂ (0.003)

Side reactions involve some other notable CO₂ consuming reactions-

$$\Box$$
 C₂H₆ = C₂H₄ + H₂, CO₂ + H₂ = CO + H₂O, CO₂+C=2CO

 \Box C₂H₆+2CO₂ = 4CO + 3H₂, C₂H₆+2CO₂ = CH₄+CO+H₂O

□ Moles CO_2 converted/moles C_2H_4 produced will be > 1.0 due to side reactions.

□ Inherent ability of CO_2 to remove coke: $CO_2+C = 2CO$

Task 2: Catalyst testing

Task 2.2 Catalyst synthesis and characterization

Catalyst recipe screening

□ Four different recipes

□ Finding preferred preparation steps to obtain

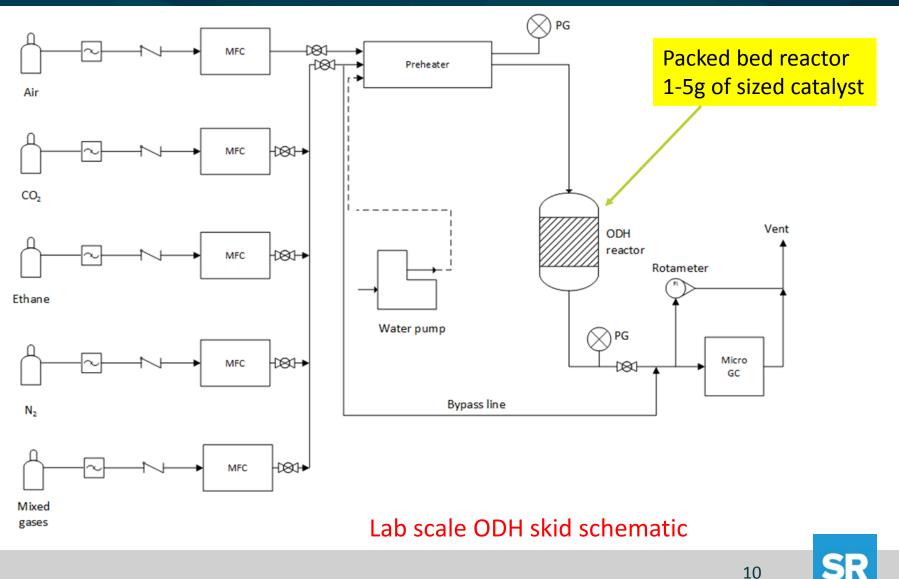
□ Critical surface attributes

Critical phases of oxides

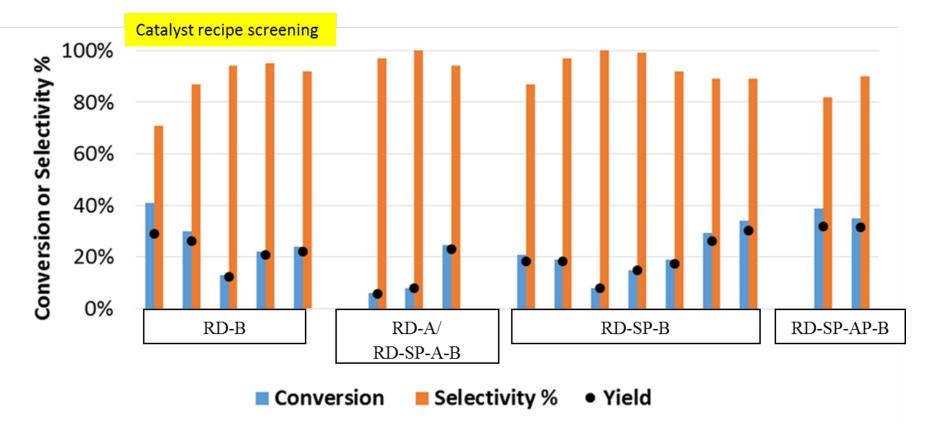
Task 2.2 Catalyst synthesis and characterization

Catalyst screening

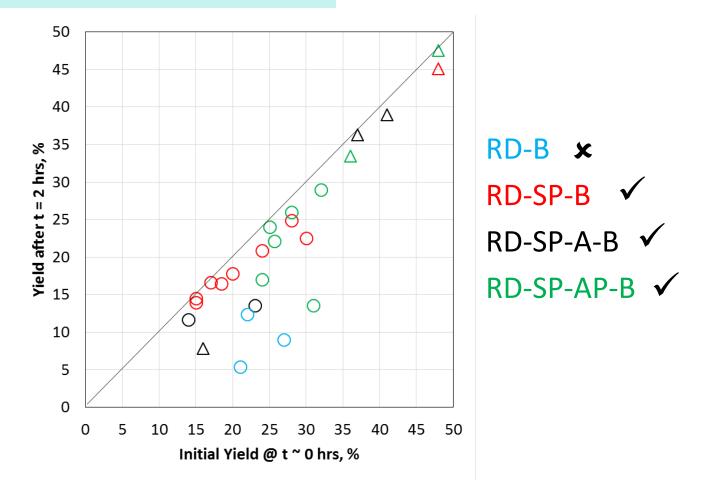
Temperature Programmed Surface Reaction (TPSR) used to screen components for low temperature ethane activation and high ethylene selectivity


Functionality	ID	Purpose	Observed roles	
Redox	RD	Alkane and CO ₂ activation	Alkane and CO ₂ activation	
Acid-base	A-B	H abstraction, CO ₂ activation, ethylene desorption	Support, interaction with other components	
Activity promoter	AP	Higher alkane/CO ₂ conversion	Higher alkane/CO ₂ conversion	
Selectivity promoter	SP	Higher ethylene selectivity	CO ₂ activation, Coke resistance	
Catalyst nomenclature		RD-B, RD-SP-A-B, RD-SP-AP-A-B etc		

Task 2.3 Oxidative dehydrogenation catalyst testing

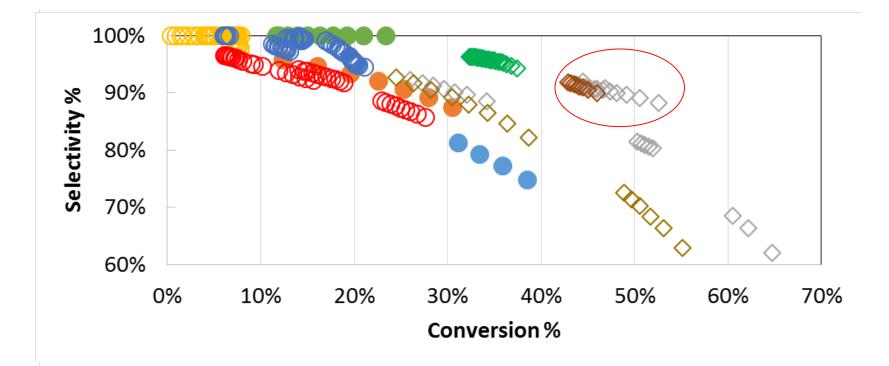

CO₂ concentrations cases

- Dilute (flue gas) CO₂
 - Coal fired flue gas contains ~12-14% CO_2 with high N₂ content
 - Feed comprised of 15% (ethane and CO_2) with remaining 85% N_2
 - Used in long term catalyst testing
- Concentrated (Captured) CO₂
 - CO₂ captured from coal fired flue gas has high purity (95% or higher)
 - Only ethane and CO_2 used as feed (<5% N₂ as internal standard)
 - High ethane partial pressure in feed allows accelerated catalyst performance and stability screening and comparison

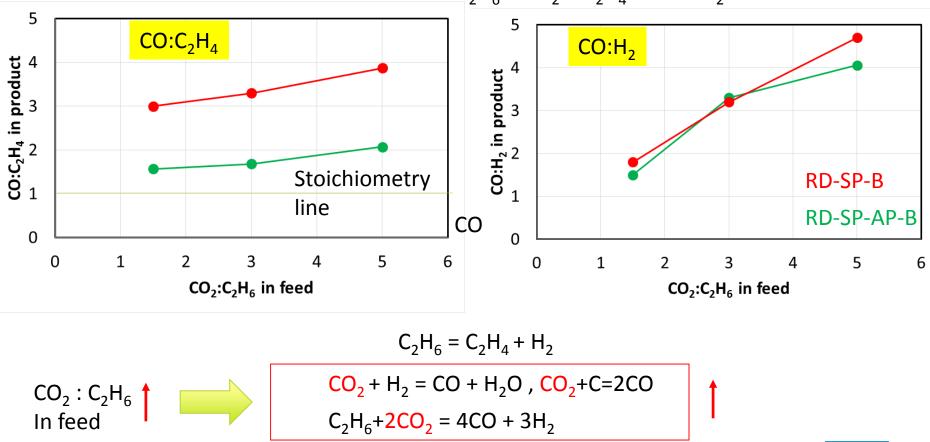

Catalyst screening summary

Catalyst optimization at specific condition (SV, T, P, Ratio of feed)

SR


Catalyst screening by stability

12

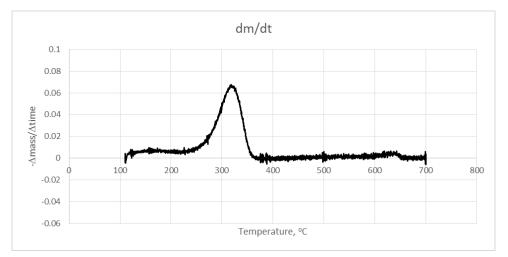

SR

Conversion vs. selectivity (progress over time)

13

CO₂ consumption and secondary product evolution

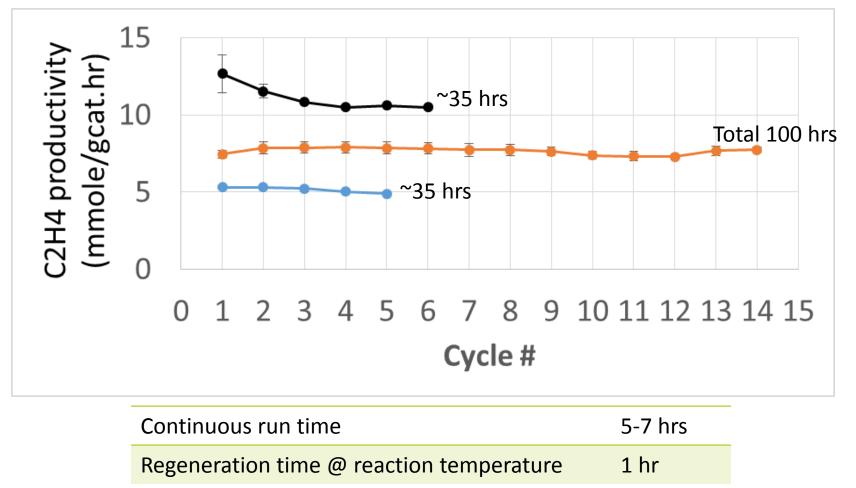
Overall reaction: $C_2H_6 + CO_2 = C_2H_4 + CO + H_2O$


Catalyst	Concentrated (Captured) CO ₂	Dilute (flue gas) CO ₂		
	Max. C ₂ H ₄ yield (per pass), %	<i>Max. Productivity</i> (mmole C ₂ H ₄ /gcat.hr)	Max. C ₂ H ₄ yield (per pass), %	Max. Productivity (mmole C ₂ H ₄ /gcat.hr)	
RD-B	29	26	-	-	
RD-SP-B	30	20	48	5.5	
RD-SP-AP-B	32	23	48	7.8	
RD-SP-A-B	23	14	41	4.7	

Yields are higher in dilute case primarily due to lower partial pressure of ethane in feed
 Ethylene productivity reduces with feed dilution

Comparison with literature reports

- Inert gas content in feed specified to mimic captured and flue gas dilutions
- \Box CO₂:C₂H₆ ratio in feed lowered to 1.5
- Ethylene productivity raised up to 26 mmoles/gcat.hr (literature < 20 mmole/gcat.hr)</p>
- Long term, multiple cycle runs conducted to determine cycle to cycle reproducibility
- Examination of the impact of certain flue gas impurities is currently in progress


Task 2.4 Catalyst regeneration

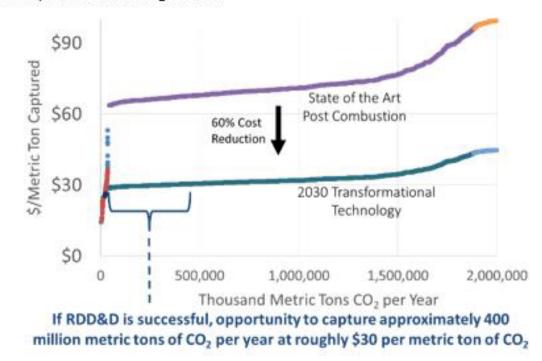
TGA plot: Coke burns off mostly
 ~300-350°C
(Catalyst regeneration @
 reaction temperature ✓)

Catalytic run in cyclic mode:

ODH run (Cycle 1) -----> Regeneration @ reaction T ----> ODH run (Cycle 2) ----->

Task 3: Initial Technoeconomic and life-cycle analysis

□ Assumptions/basis


Coal-fired po	ower plant	ODH plant		
Net power output (MW)	315	Ethylene Production capacity, (ton/year)	790,000	
Type of coal	Bituminous	CO_2 :ethane ratio (feed)	5.0	
Boiler	PC subcritical	CO ₂ consumption (ton/ton	2.4	
CO ₂ emission (ton/MWh) ¹	0.8	ethylene)		
Total CO ₂ emission (ton/h)	253	Total CO ₂ consumption (ton/hr)	228	
Total CO ₂ capture @ 90% (ton/h)	228	Plant life (years)	30	
CO ₂ capture process ²	Shell Cansolv post-combustion CO ₂ capture amine-based	Ethane price (\$/ton) ³	150	
CO ₂ capture cost (\$/ton) ²	56.2	CO_2 price (\$/ton) ⁴	46	
CO ₂ avoided cost (\$/ton) ²	76	⁴ Out of 76\$/ton CO ₂ avoided cost power plant share \$30/ton cost and the rest (\$46/ton) is shared by proposed ethylene plant.		
Plant life (years)	30			

SR

1https://www.eia.gov/tools/faqs/faq.php?id=74&t=11 2Cost and performance baseline for fossil energy plants Volume 1a: Bituminous Coal (PC) and Natural gas to electricity Revision 3, DOE/NETL-2015/1723 ³http://marketrealist.com/2016/05/ethane-prices-fell-4-week-rally-impact-mlps/. Accessed 12 Nov., 2016.

Task 3: Initial Technoeconomic and life-cycle analysis

Supply Curve with Transformational Carbon Capture Technologies Cost of Capture from Existing Sources

Carbon capture, utilization and storage: Climate change, economic competitiveness and energy security. DOE Report. August 2016.

SR

Task 3: Initial Technoeconomic and life-cycle analysis

Technology compared with baseline steam cracking (SC) in two different scenarios: (1) Direct utilization of flue gas as CO_2 source, (2) Use captured (95%) CO_2

Aspects	SC (baseline)	Flue gas	Captured CO ₂
Raw materials	C ₂ H ₆ , steam (0.4lb/lb C ₂ H ₆)	C ₂ H ₆ , N ₂ , CO ₂	Ethane, CO ₂
Raw material (\$/ton ethylene)	270	250	358
Capex (\$/ton ethylene)	45	67	34
Utility cost (\$/ton ethylene)	108	161	113
Total production cost (\$/ton ethylene)	423	480	505
Ethylene selling price (\$/ton ethylene) ¹	978	978	978
By-product (CO or derivatives) sale to reach baseline profit (\$/ton ethylene)	0	57	82
Net CO ₂ avoided (ton/hr)	0	83	126
CO ₂ avoidance cost for power plant (\$/ton CO ₂)	76	0	30

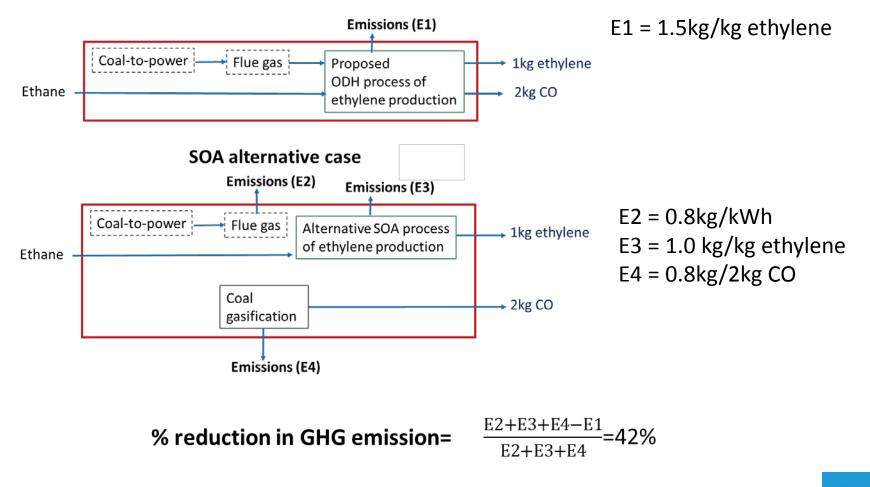
Task 3: Initial Technoeconomic and life-cycle analysis

Updated Preliminary LCA

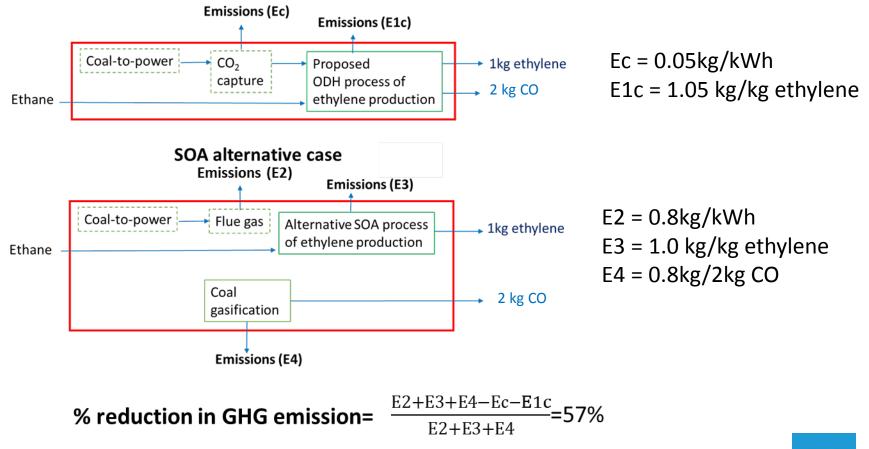
Functional units: 1 kg ethylene and 2 kg CO

GHG emission flows: CO₂

Energy input flows: Methane combustion


Probable Plant location: Near Gulf coast or Pennsylvania

State of the art (SOA) alternative units: (i) Ethane steam cracking (Ethylene) and (ii) Coal gasification (CO as producer gas).


Task 3: Initial Technoeconomic and life-cycle analysis

Scenario 1: Direct flue gas utilization

Task 3: Initial Technoeconomic and life-cycle analysis

Scenario 2: Captured CO₂ (95%) utilization

Comparison with state of the art

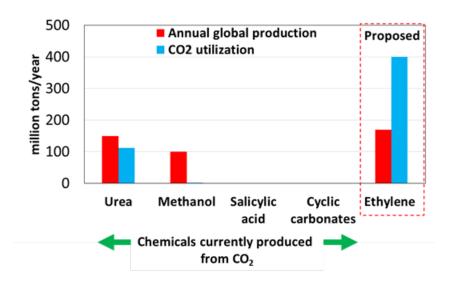
Two competing processes – (1)Steam cracking (SC) and (2) Oxidative dehydrogenation by O_2 (ODH(O_2))

Aspects	SC	ODH (O ₂)	ODH (CO ₂)
Commercialization status	Commercial	Research	Research
Reactants	Steam	Air /O ₂	CO ₂
∆H, kJ/mol	137	-105	134
Operating Temperature	750-900°C	<500°C	<700°C
CO ₂ emission	Emission	Emission	Consumption
Major by-product(s)	C ₁ -C ₄ alkanes/olefins	CO ₂	CO
Catalyst	Steam	Expensive	Low cost
Chemical safety risk	Low	Highest	Lowest

Future work

Remaining tasks-

- Impact of impurity testing (Task 4)
 - O₂, H₂O, SO₂, NOx (Determine recommended impurity levels)
- Long term catalyst testing for up to 500 hrs (Task 5)
- Technology assessment (Task 6)


Conclusion

Process advantages/promises

- Limits use of water in ethylene plant
- Reduces CO₂ avoidance cost to \$30/ton
- CO₂ reduction via CO₂ conversion.
- Aligns favorably with recently passed carbon capture based legislature (45Q)
- Makes CO (platform chemical) as co product

Future consideration

- Separation of post-reaction raw gas stream
- Co-location of CO use with the available resources

Acknowledgement

This material is based upon work supported by the Department of Energy under Award Number DE-FE0029570.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Thank you!

