FEW0225: High-efficiency, integrated reactors for sorbents, solvents, and membranes using additive manufacturing

NETL Carbon Capture Technology Program Review August 13, 2018 Joshuah K. Stolaroff

LLNL-PRES-XXXXX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Goal: more efficient, lower cost reactors for CO₂ capture.

We focus on three design features:

Permeable Membrane

Triply Periodic Minimal Surface (gyroid-like) structures

Hierarchical flow channels

Multifunctional Reactors

Project Plan

FEW0225: \$3.8M over 4 years

- 10 tasks in 3 tracks
- Downselect to two reactor concepts, developed in series
- Tech transfer targeted for middle of Year 4 for 1st-gen design

Gyroid reactors: now possible through additive manufacturing

AKA: Triply Periodic Minimal Surfaces (TPMS)

Surface defined by, e.g.:

 $\sin\left(\frac{2\pi}{L}x\right)\cos\left(\frac{2\pi}{L}y\right) + \sin\left(\frac{2\pi}{L}y\right)\cos\left(\frac{2\pi}{L}z\right) + \sin\left(\frac{2\pi}{L}z\right)\cos\left(\frac{2\pi}{L}x\right) = t$

Schwarz-P

IWP

Schwarz-D

Order of magnitude improvement in heat & mass transfer vs tubes.

 \Rightarrow Need to understand mechanisms for optimal design.

¹Femmer et al. 2015

Fluid folding leads to improved heat exchange.

Temperature in fluids at steady state

Water/water heat exchanger

(simulation in StarCCM)

U = 0.01 m/s, *Re* = 87, *Pe* = 521

Fluid folding leads to improved heat exchange.

Temperature in fluids at steady state

Water/water heat exchanger (simulation in StarCCM)

U = 0.01 m/s, *Re* = 87, *Pe* = 521

Fluid folding leads to improved heat exchange.

Temperature in fluids at steady state

U = 0.01 m/s, *Re* = 87, *Pe* = 521

Many reactor configurations possible with additive manufacturing.

Gas Separation Membrane

Gas Absorption Monolith w/ Heat Exchange

Printed Composite Sorbent

Heat Exchange

Impermeable Conductive Support

Gas Absorption Monolith

Gas Liquid Contacting

Permeable Membrane

from Toombes et al., Macromolecules 40(25):8974-8982, 2007

Many reactor configurations possible with additive manufacturing.

from Toombes et al., Macromolecules 40(25):8974-8982, 2007

Gas Separation Membrane

Gas Absorption Monolith

Work Flow: From design concept to 3D printing

Schwarz-D structure generated by in-house Level Set code (TransFort) STL file generated by Visit

3D printed Schwarz-D using PDMS

Challenges for gyroid reactor design:

- 1. How to manifold the structure to connect fluids and distribute flow
- 2. How to maintain strength with small features
- 3. How to choose best geometry for the application

Size hierarchy can solve connection & distribution

Varying wall thickness improves structural strength and robustness

Gyroid

Schwarz-D

Otherwise large cells with thin walls are weak points.

New geometry candidates discovered through recent literature review

- Schoen-G or Gyroid¹
- Schwarz-D²
- Schwarz-P³
- Schoen I-WP
- Fischer-Koch
- Schwarz-CLP
- Schwarz-transverse-CLP⁴

^{1,4} High mass transfer in filtration and membrane distillation (Sreedhar et al., 2018, Thomas et al. 2018)
² High heat transfer using water (Femer et al. 2015)
³ High mass transfer during CO₂ transport (Femmer et al. 2015)

Goals for reactor fabrication

- 1. Identify compatible, printable materials
- 2. Adapt fabrication techniques for gyroid reactors
- 3. Build & test reactor prototypes

Low-cost 3D-printed packings in plastic?

Compatible with CO₂-binding Organic Liquids:

- Polypropylene
- Nylon,
- polyester (PET)
- CPVC

Compatible with diethanolamine:

- Nylon
- PET

Multiple impermeable materials demonstrated.

Inconel 625 (nickel alloy)

Permeable materials would allow additional reactor types.

Printed Composite Sorbent

Large Area Projection Micro Stereo-Lithography: $1 \,\mu$ m resolution on a 10 cm build

Large Area P μ SL at LLNL

LAPµSL makes the high resolution gyroid reactors possible

CO_2 -permeable silicone gyroids can now be printed in LAP μ SL

Required adjusting resin formulation and and print parameters.

Reactor designs are currently being refined

Design parameters:

- Flow geometry
- Inlet/outlet orientation
- Outer wall thickness for maximum strengt
- Cleaning methods
- Nozzle attachment mechanism

Through design iteration the reactor has become more robust

First mass transfer measurements in silicone-gyroid reactor

- 3% Na₂CO₃ solvent
- 0.47 L/min CO₂ flow rate
- Monolithic reactor configuration / CC: Countercurrent reactor configuration

Initial simulations of mass transfer in StarCCM

First Silicone-MOF Printed Composite Sorbent tested.

- 30 wt% HKUST-1 Metal Organic Framework / 70% SE-1700
- 0.22 mmol/g loading
 - 80% expected loading
 - 50% loading within ~1s

Conclusions

- Hierarchical gyroids show great promise as next-generation reactor designs.
- Gyroids appear most useful to improve liquid-side heat transfer or mass transfer
- Candidate configurations for further development are:
 - Intercooled absorber packings
 - Gas/solvent membrane reactor
 - Sorbent scaffolds with integrated heat exchange

Project Team

Joshuah K. Stolaroff, Du Nguyen, Pratanu Roy, Julie Mancini Samantha Ruelas, Matthew Worthington, William Smith, Sarah E. Baker, James S. Oakdale

Acknowledgements

Andy Aurelio Lynn Brickett

Questions