Design of Novel Mixed Matrix Membrane Materials
Using High Throughput Computational Methods

Extending Predictions to Include Cost
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Designing Mixed Matrix Membranes

MMMs have great potential to lower the cost of CO, separations

* Challenges in Lab:
* Pairing the “best” polymer and the “best” MOF = not necessarily “best” MMM.
* Permeability of MOF particles not easily measured.
* MOF space: ~60 building blocks can be put together into ~5 million possible MOF structures!

* How can Computations Help?
* Screen large number of MOFs and MMMs.
* Understand the relationship between MOF properties and MMM properties.
* Connect atomistic calculations with process simulations.

* Create a prediction of CCC for each MOF/polymer pair.
* Use computational methods to aid the design of better MMM s.
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Project Design

MOF Properties Pure Membrane Properties
(Predicted by Calculations) for ~10 polymers
DB of ~137,000 measured experimentally
Hypo-MOFs &
DB of ~2,500 MOFs \ / |
CORE-MOFs ' ,
Maxwell Eq.
Predicted Properties 3
for well over a million ¥
possible MMMs
Estimate of Cost ‘ ’ 2
of Carbon Capture
based on an Carbon Capture Simuiston o naustry mpact
assumed configuration .
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Hypothetical Structures: 137,000 MOFs

Existing MOFs deconstructed into a library of building blocks Building blocks re-combined using simple

geometrical rules to create periodic, 3D
structures

1: Metal Center 2: Organic Linkers

3: Functional Groups
(e.g. —Br, -Cl, phenyl, etc.

Christopher E. Wilmer
University of Pittsburgh

C. E. Wilmer et al., Nature Chemistry, 2012, 4, 83-89. TN Y AL
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CoRE Database of MOF Structures (Real)

Automated screening of the
Cambridge Structural Database to
find structures resembling MOFs

Database Construction Hiﬁh‘Thf"“Eh[’“t
e Automated methods to clean p GCMC Simulation
experimentally obtained structure T X&KL HH —
files ? ﬂ _{:}ﬁ _§ céﬁzf .
e Remove solvent molecules i CoRE MOF Database $§
e Remove disorder Database z |
o N6’OOO Structures Helium Yaid Fraction

We have completed calculations on
~ Y. G. Ch t al., Chemistry of Materials, 2014, 26 (21), 6185-6192.
2,500 CORE MOFS ungeta emistry of Materials (21)
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Calculation of MOF Properties

* Geometrical Characterization (Zeo++)
* Largest cavity diameter (LCD)
* Pore limiting diameter (PLD)
* Surface area

* MC Calculations = Gas Adsorption =2 Solubility ()
* MOF atomic positions held fixed
* Atomic charges calculated via EqEq Method
 UFF force field for MOF atoms
* TraPPE force field for gases
» MOF structures held fixed

« MD Simulations = Diffusivity (D)

* Porce field parameters as in MC Calculations
* Velocity autocorrelation function used to calculate diffusivity

Samir Budhathoki
Poster: Tuesday 5 PM

* Permeability = S*D (solution diffusion mechanism)

S. Budhathoki, A. Ajayi, C. E. Wilmer, and J. Steckel, in preparation.
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Using the Maxwell Eq. to Predict MMM Properties

 The theory was developed for predicting

the dielectric behavior of composite
materials.!

It has been previously applied to
MMMs.?

Assumptions:
e volume fraction £0.3
* jideal interface
* spherical, well-dispersed particles

1R.H.B. Bouma et al., J. Membrane Science, 128, 141, 1996.

2Seda Keskin and David S. Sholl, En. & Env. Sci., 3, 343, 2010.

Maxwell Equation

Py + 2P — 2¢4(P. — Py)
Peff = P
Py + 2P, +@q (P, — Py)

P, s ¢— the effective permeability of the MMM

P.— permeability of continuous phase (polymer)

P,;— permeability of dispersed phase (MOF)

@ 4— the volume fraction of the dispersed phase

 (Perp),
neet s ),
J

%% U.S. DEPARTMENT OF i

'@/ ENERGY




Validation: Predicted and Expt. MMM Properties

104: ! ! LN | ! ! e 1 ! ! | ! ! L |
| ® ZIF-8 Ultem Eiras 2016
B Mn-formate PSF Car 2006 P {
% coerc vee car 2006 Comparison between
10°H A Cu-BTC PDMS Car 2006 E predictions and
| ® MOF-5 Matrimid Perez 2009 ] .
| @ ZIF-8 PSF Zornoza 2010 experlmental
> || » Cu-BTC PSF Zornoza 2010
102} { measurements for
MMMs

10*}

* CO, Permeability
(blue symbols) and N,
Permeability (green
symbols)

10°}

Predicted CO, Permeability in Barrer

107! 10Y 10t 102 103 104
Expt. CO, Permeability in Barrer
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Properties of MMMs

In this figure, MMMs based
on the hypothetical MOF
database and range of
polymers are shown.

10°F —

« Major conclusion - can
significantly improve
membrane properties

« For polymers with low
CO, permeance,
inclusion of any MOF
leads to an
improvement.

=
o
=
I

CO2/N2 Selectivity

« For polymers with high
! ¢ : CO, permeance, the
- Matrimid 4y TFE NETL-POLY-3 _ effepér) Iof the MOF is
! PSF —)— MEEP PIM-1 ] variable.

PDMS {~ 6FDA-DAM

10! 10° 103 10*
Permeance in GPU
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Projected Estimate of Carbon Capture Cost

Flue Gas lQﬁlﬁ&Lﬂ_>
Methodology: ‘ M1 1 M-2 .
| Sweep Air

CO, capture rate of 90% target _

650 MW super critical power plant 2 Bo'ki, I
Ideal CO, selective membrane —
Equations developed in Aspen Custom Modeler® (ACM) v8.4.
Optimization framework set up in

Framework for Optimization, Quantification
of Uncertainty and Sensitivity (FOQUS)

| M-=3

A

Vacuum pumps

» \4 {'
Multistage compression Multistage _@—>
compression

CO,Sequestration

Reference cost of electricity(COE,)
assumed to be S70/MWh for power plant

without carbon capture. Optimized variant of three-stage membrane

Assumed $50/m? cost for membrane configuration initially developed by Merkel et al. (2010)

module COE¢; — COE,

Cost of CO, Captured($/toncy,) = =
2captured

Assumed a selective layer of 1 um.

Kayode Ajayi

Merkel, T. C., Lin, H., Wei, X., Baker, R. (2010). Journal of
Membrane Science, 359, 126-139.
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Projected Estimate of Carbon Capture Cost

* Allows us to assign a Cost of Carbon Capture (CCC) based on permeance,
selectivity of a MMM.

* High-throughput project, survey millions of materials.

* Purpose is to understand link between material properties, process
optimization.

CCC = f(PC

0, aco% ]
2
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Pairing MOFs with NETL Polymer 3

Each dot represents a MOF in the
hypothetical MOF database.

: 10° ———r———
 The placement of the dot is : 675
governed by the MOF 104L 1 | @
properties. 3 1620 _ S
- > 103} : O =
« The color of the dot is £ ; 162.5 O
governed by the CCC. =R S < Neat Polymer
10%} . &
@ : 160.0 ©
& Z S
~ 10 L E 4575 %
What can we learne < : £
. O 10° i ] 455.0 8 .
« Some MOFs improve the O 5 - Y o
membrane S - 1 o o)
= 10-1 = - 52.5 8 o
« A lot of MOFs make the : = ©
’ ) [ 50 0
membrane worse! 1072} .
- For this polymer, we should pick  jgsl 0 00 0oy ) 73
MOFs with permeability and 102 10° 10* 10° 10° 107 10® 10° 10%
selectivity ~3 orders of MOF CO2 Permeability in Barrer
magnitude larger than that of
the polymer.
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Characteristics of MOFs in Best/Worst MMMs

I\/IOFs with CCC < S51/ton CO MOFs with CCC > S51/ton CO

2 Q,, (CO, KJ/mol) 29,, (CO, kJ/mol)

104 : 1 1 1 I 1 | L l I : 104 : I 1 1 I
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2 r ] 1 -6 > t ' ~6
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=~ ke L Py S T . s ~12
g t.‘:":‘ e 8 ?3 i i
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e INenl e ] v F RERAI :
‘c:u - HC;, ! 1 |- -24 ‘E - ‘* ! : ——-24
= I PR : 1 = i 4% :
@ i . 430 & } ¥ . { |{-30
.E 2 n o.;? : o .E 2 | ;:‘ : _
. : : ] [H-36 £ 'O R | 1 |{-36
£ . : 1 B-2 £ ' : 1 B+
101L_specipl characteristics | L 1o1Lspecial charagteristics , | L
2 6 10 20 30 2 6 10 20 30
Largest Cavity Diameter (A) special characteristics: Largest Cavity Diameter (A)
LCD< 10 A
Grav. Surf. Area < 2000 m?/g .
CO, heat of ads. -40 to -30 kJ/mol N Yo i AToNs
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Results for Some Highly-Studied MOFs

10° ¢ -
SIFSIXCUI
¢'CN-60 Mg-DOBDC
Dia-7i-1-Zn

>
>
£ 10°F ZnMOF-74 ]
< MOOFOUR-1-Ni
" - _DOBD
o CROFOUR-2-Ni Cu_é?TOC OBDC
< ZIF-8
S znpc  4IF-2

10t} _
S | ZIF-6 i -
S Cu-BTC ~ Dladi2

ZIF- CoBDP
73 COF-102
ZIF-10
NU-1000
100 T sl L]
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cCC (5 per ton 0

PCN-60/NETL Polymer 3 S53
SIFSIX-Cu2i/NETL Polymer 3 S54

NETL Polymer 3 (neat) S61

Cost of CC in $ per ton CO2
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NETL Polymer 3 with CoRE MOFs

CCC ($/ton CO,)

2
w0 ' Hypo-a/NETL Poly 3 S46
o7 CoRE-a/NETL Poly 3 S47
CoRE-b/NETL Poly 3 $49
.g‘ §— CoRE-c/NETL Poly 3 $50
g °8 & PCN-60/NETL Poly 3 $53
? =3 & SIFSIX-Cu2i/NETLPoly3  $54
% 8 NETLPoly 3 (neat) $61
© 49 ©
)
© < There are CoRE MOFs that have

N
D

great potential to improve the
MMMs.

« Many CoRE MOFs have not been
studied since first reported.

Permeance in GPU
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Synthesis of MMMs Based on Predictions

Focusing on NETL Polymer 3.

Identified ~40 MOFs from the CoRE database that are predicted to pair well with NETL Polymer 3.

Three MOFs selected for first round, two synthesized now.

MOF Synthesis:
Anne Marti

MOF Synthesis:
Sameh Elsaidi

Surendar Venna
MMM Fabrication
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Summary

Connected atomistic simulations to Relationship between polymer and MOF properties
CCC for well over a milion MMMs. can be explofred to deS|gn better MMMs.
10j ‘; l ‘ !675
CCC — f PC02 y OKCO% - u ] -65.0S
N2 % ol 762.5§
MMM out NETL Polymer 3:
Predict CCC $61 > $46 per ton CO, 2 -
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