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Designing Mixed Matrix Membranes

MMMs have great potential to lower the cost of  CO2 separations 

• Challenges in Lab:

• Pairing the “best” polymer and the “best” MOF  not necessarily “best” MMM.

• Permeability of  MOF particles not easily measured.

• MOF space: ~60 building blocks can be put together into ~5 million possible MOF structures!

• How can Computations Help?

• Screen large number of  MOFs and MMMs.

• Understand the relationship between MOF properties and MMM properties.

• Connect atomistic calculations with process simulations.

• Create a prediction of  CCC for each MOF/polymer pair.

• Use computational methods to aid the design of  better MMMs.



3

Project Design
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Hypothetical Structures: 137,000 MOFs

2: Organic Linkers
1: Metal Center

Building blocks re-combined using simple 
geometrical rules to create periodic, 3D 
structures

Existing MOFs deconstructed into a library of building blocks

C. E. Wilmer et al., Nature Chemistry, 2012, 4, 83–89.

3: Functional Groups
(e.g. –Br, -Cl, phenyl, etc.

Christopher E. Wilmer
University of Pittsburgh
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CoRE Database of MOF Structures (Real)

Automated screening of  the 
Cambridge Structural Database to 
find structures resembling MOFs

• Automated methods to clean 
experimentally obtained structure 
files  
• Remove solvent molecules

• Remove disorder

• ~6,000 structures

We have completed calculations on 
~2,500 CoRE MOFs Y. G. Chung et al., Chemistry of Materials, 2014, 26 (21), 6185–6192.
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Calculation of MOF Properties
• Geometrical Characterization (Zeo++)   

• Largest cavity diameter (LCD)
• Pore limiting diameter (PLD) 
• Surface area

• MC Calculations  Gas Adsorption  Solubility (S)
• MOF atomic positions held fixed 
• Atomic charges calculated via EqEq Method
• UFF force field for MOF atoms
• TraPPE force field for gases
• MOF structures held fixed

• MD Simulations  Diffusivity (D)
• Force field parameters as in MC Calculations
• Velocity autocorrelation function used to calculate diffusivity

• Permeability = S•D (solution diffusion mechanism)

Samir Budhathoki

S. Budhathoki, A. Ajayi, C. E. Wilmer, and J. Steckel, in preparation.

Poster: Tuesday 5 PM
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Using the Maxwell Eq. to Predict MMM Properties

𝑃𝑒𝑓𝑓 = 𝑃𝑐
𝑃𝑑 + 2𝑃𝑐 − 2𝜑𝑑 𝑃𝑐 − 𝑃𝑑
𝑃𝑑 + 2𝑃𝑐 +𝜑𝑑 𝑃𝑐 − 𝑃𝑑

𝑃𝑒𝑓𝑓– the effective permeability of the MMM

𝑃𝑑– permeability of dispersed phase (MOF)

𝑃𝑐– permeability of continuous phase (polymer)

𝜑𝑑– the volume fraction of the dispersed phase

𝛼
𝑖𝑑𝑒𝑎𝑙 ൗ𝑖 𝑗

=
𝑃𝑒𝑓𝑓 𝑖

𝑃𝑒𝑓𝑓 𝑗

Maxwell Equation

1R.H.B. Bouma et al., J. Membrane Science, 128, 141, 1996.
2Seda Keskin and David S. Sholl, En. & Env. Sci., 3, 343, 2010.

• The theory was developed for predicting 
the dielectric behavior of composite 
materials.1

• It has been previously applied to 
MMMs.2

• Assumptions:
• volume fraction ≤ 0.3
• ideal interface 
• spherical, well-dispersed particles
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Validation: Predicted and Expt. MMM Properties

• Comparison between 
predictions and 
experimental 
measurements for 
MMMs

• CO2 Permeability 
(blue symbols) and N2

Permeability (green 
symbols)
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Properties of MMMs
In this figure, MMMs based 
on the hypothetical MOF 
database and range of 
polymers are shown.   

• Major conclusion  can 
significantly improve 
membrane properties

• For polymers with low 
CO2 permeance, 
inclusion of any MOF 
leads to an 
improvement.

• For polymers with high 
CO2 permeance, the 
effect of the MOF is 
variable.  
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Projected Estimate of Carbon Capture Cost

Optimization framework set up in 
Framework for Optimization, Quantification 
of Uncertainty and Sensitivity (FOQUS)

Reference cost of electricity 𝐶𝑂𝐸𝑟𝑒𝑓

assumed to be $70/MWh for power plant 
without carbon capture.

Assumed $50/m2 cost for membrane 
module

Assumed a selective layer of 1 μm.

M-1 M-2

To Boiler

Sweep Air

CO2Sequestration 

To Stack

Vacuum pumps 

Multistage compression

Flue Gas

Multistage 

compression

M-3

Optimized variant of three-stage membrane 
configuration initially developed by Merkel et al. (2010) 

Merkel, T. C., Lin, H., Wei, X., Baker, R. (2010). Journal of 
Membrane Science, 359, 126-139.

Cost of CO2 Captured $ 𝑡𝑜𝑛𝐶𝑂2
  =  

𝐶𝑂𝐸𝐶𝐶 − 𝐶𝑂𝐸𝑟𝑒𝑓

𝐶𝑂2𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑

 

 
Kayode Ajayi

Methodology:
CO2 capture rate of 90% target 
650 MW super critical power plant
Ideal CO2 selective membrane
Equations developed in Aspen Custom Modeler® (ACM) v8.4.
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• Allows us to assign a Cost of  Carbon Capture (CCC) based on permeance, 
selectivity of  a MMM.

• High-throughput project, survey millions of  materials.

• Purpose is to understand link between material properties, process 
optimization.
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Pairing MOFs with NETL Polymer 3 
Each dot represents a MOF in the 
hypothetical MOF database.

• The placement of the dot is 
governed by the MOF 
properties.

• The color of the dot is 
governed by the CCC.

What can we learn?

• Some MOFs improve the 
membrane

• A lot of MOFs make the 
membrane worse!

• For this polymer, we should pick 
MOFs with permeability and 
selectivity ~3 orders of 
magnitude larger than that of 
the polymer.

Neat Polymer
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Characteristics of MOFs in Best/Worst MMMs
MOFs with CCC < $51/ton CO2 MOFs with CCC > $51/ton CO2

special characteristics:
LCD < 10 Å

Grav. Surf. Area < 2000 m2/g
CO2 heat of ads. -40 to -30 kJ/mol

76% have 
special characteristics

11% have
special characteristics
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Results for Some Highly-Studied MOFs
Membrane CCC ($ per ton CO2)

PCN-60/NETL Polymer 3 $53

SIFSIX-Cu2i/NETL Polymer 3 $54

NETL Polymer 3 (neat) $61
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NETL Polymer 3 with CoRE MOFs

Membrane CCC ($/ton CO2)

Hypo-a/NETL Poly 3 $46

CoRE-a/NETL Poly 3 $47

CoRE-b/NETL Poly 3 $49

CoRE-c/NETL Poly 3 $50

PCN-60/NETL Poly 3 $53

SIFSIX-Cu2i/NETL Poly 3 $54

NETL Poly 3 (neat) $61

• There are CoRE MOFs that have 
great potential to improve the 
MMMs.

• Many CoRE MOFs have not been 
studied since first reported.
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Synthesis of MMMs Based on Predictions

• Focusing on NETL Polymer 3.
• Identified ~40 MOFs from the CoRE database that are predicted to pair well with NETL Polymer 3.
• Three MOFs selected for first round, two synthesized now.

MOF Synthesis:
Sameh Elsaidi

MOF Synthesis:
Anne Marti

Surendar Venna
MMM Fabrication
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Summary
Relationship between polymer and MOF properties 
can be exploited to design better MMMs.

Connected atomistic simulations to 
CCC for well over a million MMMs.
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MMM out NETL Polymer 3:

Predict CCC $61  $46 per ton CO2

Synthesis is 
underway!


