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1. Computational Solvent Screening (Task 5) 
2. Computational Polymer Screening (Task 12)
3. Simulations to Optimize Polymer Blends (Task 12)
4. Simulations of  MOF-Polymer Interactions (Task 12)

Overall Motivation: We seek to use computational methods to 
• provide insight at the atomistic level, 
• optimize the properties of  existing materials, and 
• identify or design new materials for carbon capture.

Outline
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Current SOA: (~1.5 mol/MPa•L) 

• Previously: screening on NIST 
DB: 23,000 compounds

• Identified ~25 promising pre-
combustion solvents including 
CASSH-1

• Motivation: Identify 
commercially available solvents 
that will outperform the best 
pre-combustion solvents 
currently available.

• Computational screening is 
efficient and effective. 

• PUBCHEM DB: 98,000,000
compounds.

Computational Solvent Screening

Wei Shi
Poster - Wednesday 5:00 PM
“Computational Efforts to Push the Limits of 
Current Physical Solvents for Pre-
combustion Carbon Capture Applications”
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In-House Web Scraper: 
• Interacts with website, 

automatically follows appropriate 
links

• Gleans specific data from 
PUBCHEM

• Chemical formula, MP, BP, 
Molecular weight, vapor pressure, 
viscosity

• Outputs result in database format to 
generate large solvent database for 
in-house use

• Written by Abbie Tran (Mickey 
Leland Energy Fellow, 2019)

• Target specific classes of  
compounds (functional groups) to 
search first

Computational Solvent Screening
PubChem Web Site
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In-House Web Scraper: 
• Interacts with website, 

automatically follows appropriate 
links

• Gleans specific data from 
PUBCHEM

• Chemical formula, MP, BP, 
Molecular weight, vapor pressure, 
viscosity

• Outputs result in database format to 
generate large solvent database for 
in-house use

• Written by Abbie Tran (Mickey 
Leland Energy Fellow, 2019)

• Target specific classes of  
compounds (functional groups) to 
search first

Computational Solvent Screening

Web Scraper

PubChem Web Site

CID MP Density BP
138453949 -135.4 1.41 64.1
409284845 -10.9 0.71 140.9
856239478 -143.0 0.9734 105.9

Solvents Database
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• CASSH-1:  (previously identified via screening) 
• good interaction with CO2, 
• moderate number of  sites for CO2 interaction 
• successful pre-combustion solvent

• CASSH-1-7: (energetic solvent, designed) 
• relatively strong interaction with CO2, 
• fewer sites for CO2 interaction 
• novel “deep clean” solvent

• P-Solvent-8: (entropic solvent, designed) 
• good interaction with CO2, 
• more sites for favorable interaction with CO2
• novel pre-combustion solvent

Solvent Design: Two Novel Solvents

Calculated Results CO2 Loading 
(mol/MPa•L)

CO2/H2 (Ideal) 
Selectivity

CASSH-1 1.5 60

CASSH-1-7 10 400

P-Solvent-8 4 55

∆𝐺𝐺 = ∆𝐻𝐻 − 𝑇𝑇∆𝑆𝑆
x-axis y-axis
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Computational Polymer Screening

Wei Shi

Poster - Wednesday 5:00 PM
“Systematic Atomistic Simulations of 
CO2 and N2 Permeability in Polymers to 
Develop Better CO2 Post-Combustion 
Membrane”

Motivation: Find (or design) polymers with: high permeability, high gas 
selectivity and good mechanical properties
• Databases:

• Membrane Society of  Australia (MSA) ~1500 entries downloaded, data must be 
manually checked

• Chemical Retrieval on the Web (CROW) ~240 entries collected via web scraper
• Properties from DB: 

• Molecular Weight
• Density
• Glass transition temperature
• Solubility parameters 

• Properties from Simulations Using In-House Code:
• Gas solubility
• Gas diffusivity
• Gas permeability
• Glass transition temperature 

• In-House Database In progress
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Polymer Screening: Novel Polymer
• Polyethylene (PE)
• Polydimethyl Siloxane 

(PDMS)
• Polytrimethyl Silyl-1-

Propyne (PTMSP)
• Functionalized 

PTMSP – Designed
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• NETL has developed a poly-phosphazene
blend that shows good permeability, 
selectivity and material properties.

• Experiments and simulations used 
together to optimize the blend

• We are varying the functionality and 
concentration of  phenoxy and ether 
groups in the side chains to optimize 
properties:

• Minimize phase separation
• Optimize the mechanical properties (durable, 

elastic, non-sticky)
• Maximize permeability, selectivity

Calculations to Optimize Polymer Blends

• Blend A: PIM-1 + MEEP0 
(100% phenoxy side chains)

• Blend B: PIM-1 + MEEP80 
(80% ether side chains) 

• Blend C: PIM-1 + MEEP100 
(100% ether side chains)
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Simulation Details

1. Dassault Systèmes BIOVIA, Materials Studio, v8.0.100.21, San Diego: Dassault Systèmes, 2014
2. Plimpton, S. J. Comput. Phys. 1995, 117, 1. LAMMPS, http://lammps.sandia.gov/

3. Maginn. et. al., J. Comput. Chem. 2017, 38, 1727–1739
4. Hagler et. al., Proteins 1998, 4, 31-47 

Samir Budhathoki

Temperature – 313 K
Pressure – 0.05 to 1bar

Polymer Generation – Materials Studio1

Absorption properties – Monte Carlo  (CASSANDRA3)
Structural and Diffusion properties – Molecular 
Dynamics (LAMMPS2)

Forcefield – CVFF4 (Consistent Valence Force Field)

MEEP80 MEEP100 PIM-1

Ali Sekizkardes

http://lammps.sandia.gov/
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• Notable phase separation
• Very little intercalation
• Gas permeation properties not obtained: 

film not well blended enough

Local Density Blend A (PIM-1/MEEP-0)
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• Blends to form a good membrane

Local Density Blend B (PIM-1/MEEP-80)

Sekizkardes J. Mat. Chem. A 2018
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• Optimized blending 
• Permeability better
• Insight: smaller ether groups 

intercalate
• Predictive tool, can be used to test 

other variations in the polymers 

Local Density Blend C (PIM-1/MEEP-100)

Experimental Results: Mixed gas at 25C

CO2 Permeability (Barrer) CO2/N2 Ideal Selectivity
PIM-1 8000 17

PIM-1/ MEEP0 film is not testable: phase separation
PIM-1/ MEEP80 3200 24

PIM-1/ MEEP100 5300 24
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Computational Screening for Mixed Matrix Membranes

Database of MOFs
(~140,000)

List of Polymers
(nine)

Molecular Simulations 
of CO2/N2 Adsorption 

& Diffusion

Analytical Model 
of MMM

Properties

Carbon Capture 
Process Modeling

(CCSI Tools)

Cost of Carbon 
Capture for each 

MMM

Over 1 million membranes

Christopher E. Wilmer
University of Pittsburgh

Computational Study Goals:
• Use large screening to determine which 

MOFs to pair with which polymer.
• Provide insight into the relationship between 

MOF and MMM properties.
• Connect atomistic calculations with process 

simulations.
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MMMs based on PIM-1/MEEP Blend

Budhathoki, Ajayi, Steckel, Wilmer, Energy and Environmental Sciences, 2019
Henry’s Constants for H2O in CoRE MOFs courtesy of:Li, S.; Chung, Y. G.; Snurr, R. Q. Langmuir 2016

• Best MMM in this set:
• Predicted CCC Reduction 

from $62.9 to $42.7 per 
tonne CO2

• This MOF has CO2/H2O 
Sorption Selectivity of 6.7

• The MOFs in this data set are 
all CO2/H2O sorption selective

• Tool for selecting MOFs to 
pair with polymers
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Experimentally Tested MMMs

Sameh Elsaidi

Sekizkardes J. Mat. Chem. A 2018, Elsaidi (in preparation)

Ali Sekizkardes

Blue squares:
Expt Polymer 
Blends

Diamonds:
Expt MMMs

Circles:
Comp MMMs
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MOF-Polymer Interactions

MOF1-MEE: -16 kcal/mol

• Density Functional 
Theory (DFT)

• Calculate MOF-polymer 
interactions

• Charge Density 
Difference:

• Yellow: charge increase
• Blue: charge decrease

• Molecule: functional 
group (ethoxy) in poly-
phosphazene side chains

• Modeling allows us to 
choose MOFs that 
interact strongly with 
polymer, prevent MOF 
aggregation

Stronger:
MOF2-MEE: -45 kcal/mol
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• Computational Solvent Screening  Creating New Larger Database, Two 
Novel Solvents Designed

• Computational Polymer Screening  Database in Progress, A Novel 
Polymer Designed

• Simulations to Optimize Polymer Blends  Simulations and Experiment 
to Optimize Blends; Predictive Tool

• Simulations of  MOF-Polymer Interactions  Computational Tools for 
pairing MOFs with Polymers for Optimal MMMs

Conclusions
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