Pre-Project Planning for a Flameless Pressurized Oxy-combustion (FPO) Pilot Plant

DOE National Energy Technology Laboratory

Project Number: DE-FE0027771

8/14/2018

Principal Investigator: Joshua Schmitt

Project Team: SwRI, ITEA, EPRI, GE Global Research, Jacobs, PRA

Overview

- Project Summary
- Project Team
- Technology Premise and Background
- Project Goals
- Project Developments and Progress

Project Summary

- Part of DOE goal for advancing Transformational Coal Technologies
- Planning of a demonstration facility
 - Cycle analysis
 - Site Selection
 - Layout
 - Pre-FEED cost estimate
- Develop economic analysis and technology maturation pathway to commercialization

Project Team

FPO Combustion

- Pressurized atmosphere of water and CO₂ under "volume expanded combustion" avoids traditional flame fronts
 - FPO combustion is more locally controllable with more uniform temperatures
 - Pressurized firing also improves cycle efficiency
- Conversion of carbon to CO₂ is over 99%
 - Almost zero carbon content in incombustible products
 - Traditional: flying and falling ash particles
 - FPO: slag with near-zero carbon content and tiny particulate

Traditional Combustion with Flame Front

Flameless Pressurized Combustion

Traditional Combustor Products: Particulate

FPO Combustor Products: Near-zero carbon, neutral slag

FPO Cycle

- Slurry of milled coal and water combusted under pressure
- Hot combustor gas is quenched through mixing
- Enters Once-Through Steam Generator (OTSG)
- A large percentage of combustion products are recycled
 - Some recycled flow used for quenching before OTSG
 - The remainder of recycled flow is mixed with pressurized oxygen and injected into the combustor
- New iteration of cycle splits before boiler and includes turbo-expander

Project Tasks and Goals

- Choose a location to host the pilot facility
 - Should already have coal receiving and handling infrastructure available
 - Must meet local regulatory requirements
- Design and layout a 50 MWth pilot facility
 - Includes engineering of coal slurrying, combustion loop, turboexpander, and once-through steam generator
 - Generate cost estimates
- Create a testing program that addresses knowledge gaps and advances FPO technology readiness level
- Prove that FPO development path can meet DOE cost and emissions targets for transformational coal technologies with techno-economic assessment

Site Selection Progress

- Weighted criteria selection process
 - Availability of funding
 - Availability of staffing
 - Permitting process
- Narrowed down to a primary and secondary site
 - Primary: University of Wyoming Central Energy Plant (UW CEP)
 - Secondary: National Carbon Capture Center (NCCC)
- Focus shifted to layout and cost of pilot

UW CEP Proposed Site

UW CEP Cycle Overview

FLAMELESS TECHNOLOGY EPRI JACOBS

UW CEP Permit Plan

- Provided documentation from UW
- Local Permits and Ordinances
 - State and local review
- Sound Issues
 - Need identified to keep below a threshold "hospital-grade acoustical design"
- Air Quality and Emissions
 - Possibly tied in with UW CEP existing Title V permit
 - Possibility of waiver
- Water Permits
 - No requirement for zero liquid discharge
 - Polish plant water products for reuse to minimize usage and cost cost
- NEPA Study
 - Goal of a Categorical Exclusion or Environmental Assessment with a Finding of no Significant Impact

PFD Development

- PFD for identification of major components and streams
 - Establishing a naming and tagging convention
 - Showing system interconnection/balance of plant
 - Identifying key streams and figures of merit
 - Showing scope breaks for project management
 - Showing material selection for components and streams

Component Specification

HHV (kJ/kg)

LHV (kJ/ka)

- Based on the "super-compliance" PRB coal published by NETL
- Heat and mass balance in Aspen Plus
- Combustion gas characterization from ITEA testing and custom codes
- Specification of major components
 - Combustor
 - OTSG
 - Turbo-expander
 - Water pumps
 - Economizers
 - Feedwater heaters
 - Water vapor condenser
 - Flue-gas desulfurization (FGD) scrubber

Coal name Coal seam nomenclature Mine ASTM D388 Rank	PRB Wyodak/Anderson Rochelle Coal Co. Subbituminous C	
Proximate Analysis⁵	As-Received	Dry
Moisture	27.42%	0.00%
Volatile Matter	31.65%	43.61%
Ash	4.50%	6.20%
Fixed Carbon	<u>36.43%</u>	<u>50.19%</u>
Total	100.00%	100.00%
Ultimate Analysis ⁵	As-Received	Dry
Carbon	50.23%	69.21%
Hydrogen	3.41%	4.70%
Nitrogen	0.65%	0.89%
Sulfur	0.22%	0.30%
Chlorine	0.02%	0.03%
Ash	4.50%	6.20%
Moisture	27.42%	0.00%
<u>Oxygen</u>	<u>13.55%</u>	<u>18.67%</u>
Total	100.00%	100.00%
		
25	As-Received	Dry
Heating Value ^{2,5}	(Reported)	(Dulong calc.)
HHV (Btu/lb)	8,800	11,546
LHV (Btu/lb)	8,486	11,113

20,469

19,738

26,856

25.850

Combustor Design

- Vertical design
 - Evolution from the horizontal combustor in the 5 MWth pilot
 - Close to design of ITEA
 15MWth commercial plant
 - Refractory lined
- Expanded volume cone
 - Gas and slurry injected at top
 - Temperature and velocity tuned with CFD
 - Cone reaches to the bottom of the combustor before traveling back up the sides to the exit
- Flue gas quenching occurs at exit

Once-Through Steam Generator (OTSG)

- Banks of finned tubes contained in a pressure vessel
 - Square duct supported and inserted into a circular pressure vessel
 - Between duct and pressure vessel is pressurized with cooler gas from the recycle blower
- Modular tube bank design can include multiple reheats
 - Banks can be assembled in different orders that optimize gas temperature profile
 - Fast startup and shutdown improves flexibility
- Size can improve ease of manufacturing and cost
 - Design of each OTSG could be kept small enough for off-site fabrication and transport
 - Multiple OTSG units may be needed, depending on plant scale

FPO 50 MW Loop Layout

- ITEA design
- Batching of quenched slag at bottom of elevated combustor
- OTSG horizontal for minimal support
- Refractory lining for combustor/pipe sections at 1380°C
- Footprint for layout in overall facility

Preliminary Test Plan

- Test plan being developed to target areas of risk and advance TRL of FPO
- Includes multiple phases of testing that mitigate risk
 - Subscale slurrying and firing trials
 - Cold commissioning of the 50MWth plant
 - Hot commissioning and shakedown
 - Steady-state, flexibility, and dynamic load testing
 - Inspection outages
 - Performance testing on-design
 - Off-design condition testing

Commercial FPO

- ITEA study with ENEL showed that cost greatly increases above 500MWth boiler
- To achieve 500MWe output, modular approach needed
- FPO loops would include combustor, OTSG, turbo-expander
- All other elements would be consolidated into single packages
 - Steam power
 - Flue gas treatment
 - Heat recovery package
 - Carbon capture

JAC

Thank You

