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Project Overview

Funding Project Participants
= Total project funding = PI: Jeffrey Neaton (LBNL)
o DOE share: $7.4M = Co-PI: Jeffrey Long (LBNL)
o Cost share: $755k » Co-PI: Maciej Haranczyk (LBNL)

» Mosaic Materials (MOF production)
» |nventys (System development)
= Electricore (System development)

_ = CCSI? (Process modeling — unfunded)
Overall Project

Performance Dates Overall Project Objectives
* Project start date: 8/1/2017 Development of a transformational
= |ndustrial partners start date: technology based upon a diamine-
8/1/2018 appended MOF for post-combustion
= Project end date: 7/31/2021 CO, capture at a coal power plant
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Technology Background: MOFs for CO, Capture

CO,H
A+ s e

"¢ H,dobpdc l

Mgz(dobpdc) mmen-Mg,(dobpdc)

= MOF channels have a diameter of 18 A and are lined with open Mg?* sites
= Dangling amines coat periphery of the channel leaving space for rapid CO, diffusion

McDonald, Lee, Mason, Wiers, Hong, Long J. Am. Chem. Soc. 2012, 134, 7056
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Technology Background: MOFs for CO, Capture
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= MOF channels have a diameter of 18 A and are lined with open Mg?* sites
= Dangling amines coat periphery of the channel leaving space for rapid CO, diffusion

McDonald, Lee, Mason, Wiers, Hong, Long J. Am. Chem. Soc. 2012, 134, 7056
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Step-Shaped Isotherms via Cooperative CO, Binding
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= Very little hysteresis upon desorption of CO,

= Step shifts rapidly to higher pressure with
Increasing temperature

McDonald, Mason, Kong, Bloch, Gygi, Dani, Crocella, Giordano, Odoh, Drisdell, Vlaisavljevich, Dzubak, Poloni, Schnell,
Planas, Lee, Pascal, Prendergast, Neaton, Smit, Kortright, Gagliardi, Bordiga, Reimer, Long Nature 2015, 519, 303
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Step-Shaped Isotherms via Cooperative CO, Binding
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CO2 uptake

= Very little hysteresis upon desorption of CO,
= Step shifts rapidly to higher pressure with ) v _— 7
iIncreasing temperature Pressure

McDonald, Mason, Kong, Bloch, Gygi, Dani, Crocella, Giordano, Odoh, Drisdell, Vlaisavljevich, Dzubak, Poloni, Schnell,
Planas, Lee, Pascal, Prendergast, Neaton, Smit, Kortright, Gagliardi, Bordiga, Reimer, Long Nature 2015, 519, 303
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CO, Inserts into the Metal-Amine Bonds

2.29(6) A + CO,

2.10(2) A

mmen-Mn,(dobpdc) mmenCO,-Mn,(dobpdc)

= |nsertion and proton transfer results in metal-bound carbamate

= Ammonium cation from neighboring site forms an ion pair with the carbamate

McDonald, Mason, Kong, Bloch, Gygi, Dani, Crocella, Giordano, Odoh, Drisdell, Vlaisavljevich, Dzubak, Poloni, Schnell,
Planas, Lee, Pascal, Prendergast, Neaton, Smit, Kortright, Gagliardi, Bordiga, Reimer, Long Nature 2015, 519, 303
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Cooperative CO, Adsorption Mechanism
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Manipulating the Adsorption Step Position
||\| H Il\l | _H
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Substituents on

N Substituents on
diamine backbone

l +CO, metal-bound amine

Substituents on
ammonium-forming amine
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Technical and Economic Advantages/Challenges

Advantages

* High tunability of amine-appended framework materials
= Large working capacity due to stepped CO, adsorption
= High CO, selectivity over N,, O,, and H,O

= Molecular level characterization is possible

Challenges

» | arge scale and economical production of materials
= Durablility and chemical stability is unknown

* Reduction of regeneration cost (temperature swing)
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Technical Approach and Project Scope

: : Computational
Synthesis of amine- Structure prediction of suitable
appended MOFs prediction MOF and diamine
(Gen1-Gen3) pairs

Materials
CO, adsorption tests, synthesis &
effect of impurities, characterization
cycling performance
Prediction of CO, binding
Collaboration Computational energy, relative CO,
with partners analysis isotherm step position, and
mechanical properties
= MOF production Characterization
= System development of materials for
= Process modeling relevant Development of transformative
parameters for a :
carbon capture technologies by

ﬂ

real process

the cooperative insertion of CO,

In amine-appended frameworks
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Project Schedule and Key Milestones (Year 1)

ﬂ
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Tasks Milestones Progress
<= | Synthesis of diamine- Deliver a new material with a | Complete
QJ . .
= appen_ded MOFs (Genl working capacity of >2.5
g_,- materials) mmol/g
8 Characterization of the Deliver a material that retains | Complete
E effects of water, SO,, and >90% of original CO,, uptake | (97%

3 | NO, on CO, adsorption capacity after 20 cycles in the | capacity

- | properties of Gen1 materials | presence of H,0, SO,, NO, retained)
Search optimal amine- Propose 2 candidates whose | Pending
appended MOFs within CO, uptake capacity is

Q databases of reported greater than 3.0 mmol/g

3 | materials

=i

%. Prediction of CO, binding Propose candidates having Complete

S | energies for amine- high CO, binding energies
appended MOFs (>70 kJd/mol)
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Year 1 Progress: Genl Material Identified

N
[

40 °C
o ©
o © °

Genl material:

. / dmpn-Mg,(dobpdc)

e ip

|® ads H2N\></NH2
$
$

dmpn
| e ¢ © ®*-91100°C
éeo © © o o
0 v T v T Y T v v v ' i
0 200 400 600 800 1000

Pressure (mbar)

(&%)
1
L

CO, Adsorbed (mmol/g)
N

= 2.4 mmol/g (9.1 wt %) working capacity with only a 60 °C temperature swing
= Approximate regeneration energy: 2.4 MJ/kg CO,

Milner, Siegelman, Forse, Gonzalez, Runcevski, Martell, Reimer, Long J. Am. Chem. Soc. 2017, 139, 13541

NATIONAL - L ) < ) L }
chmomv =) BERKELEY LAB mosaic Inventys '( CES |~ 13

LABORATORY .
materials ELECTRICORE




Genl: Humid Breakthrough Experiments

Humid N, (< 0.1 mmol/g)
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Dry N, (< 0.1 mmol/g)
| bry 15% co, (2.7 mmolrg)
1.24 Humid 15% CO,_, cycle 3 (3.0 mmol/g)
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= Breakthrough experiments with pre-humidified column and gas stream show
sharp CO, breakthrough and high capacity
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Genl: 1000 Adsorption/Desorption Cycles

20 16
Adsorption: humid 15% CO, in N,, 40 °C, 5 min
[t AT AR SRR
16 -
-12

Quantity Adsorbed (g/100 g)
o N
(6 001/6) Anoeden BuipAn

{ (L0 (K (OO OO OO O T OO R (((((((((((((((((((((((((((((((((((((((((((((@Kz@m@
. o
Desorption: humid CO,, 100 °C, 1 min
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= Stable to 1000 humid adsorption/desorption cycles under simulated flue gas
conditions (diamine loading after experiment: 97%)
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Genl: Thermal, CO,, H,O, and O, Stability

5 204 Genlinitial Genl initial
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» Genl material shows excellent thermal stability under humid conditions, and
stability to oxidation at high temperatures

» |nfrared spectra show no evidence of urea formation

» Long-term storage in ambient conditions also reveals no change in performance
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Stability Comparison with PEI-MCM-41

50 wt % PEI-MCM-41
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» Substantial capacity loss for PEI-MCM-41 after accelerated decomposition test

» [nfrared spectra indicate urea formation
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Genl Stability: SO, Exposure Testing

| Gen1 initial
154 After 30 ppm SO,, 40 h
After 75 ppm SO,, 16 h
1 After 300 ppm SO,, 4 h
104 After 300 ppm SO,, 8 h

CO, Adsorbed (g/100 g)

dry CO, isobars
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Temperature (°C)

= Exposure time delivers 1 SO, per diamine or 2 SO, per diamine (300 ppm, 8 h)

= 89% of CO, uptake capacity retained in most aggressive test
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Genl: A Mixed Mechanism for CO, Uptake

Solid-state NMR experiments allow form of adsorbed CO, to be determined

162.4

163.5 1610

164.6

Carbamic acid at 161.0 ppm

OH

P (CO,) =1062 mbar . N HZN/X\” O

Ammonium carbamate at 162.4 ppm

® O
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Genl: Proposed CO,-Loaded Structure

CO,-loaded structure based upon NMR and IR spectra and DFT calculations
contains a 1:1 mixture of ammonium carbamate and carbamic acid groups

ammonium
carbamate
chain

H-bonded
carbamic
acid groups
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DFT Predictions Match Measured Isosteric Heats

(kJimol)

40 4

&l

AR

L - L]

1 2 3
CO, loading (mmol/g)

DFT: =73 kJ/mol (Exp: =71 kJ/mol) DFT: =54 kJ/mol (Exp: =52 kJ/mol)

50% CO, loading 100% CO, loading
(2 carbamate + 1 carbamic acid) (3 carbamate + 3 carbamic acid)
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Partners for Developing a Separation Process

MOF Manufacturing: Separation System:
Mosaic Materials Inventys (w/ Electricore)

STEAM

Mosaic
Material®

= Total funding for industrial partners: $3M from DoE plus $775k in cost share

= Subcontracts and IP agreement are nearly finalized
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Mosaic Materials: Large-Scale MOF Production

Founded in 2014 to commercialize MOFs for gas separations
Synthesis and testing laboratory in Berkeley, CA
Producing kg-scale quantities of patent-protected adsorbents for:
1. CO, separations: flue gases, biogas, natural gas, air
2. Industrial chemicals: ethylene, propylene, CO, H,S
Production methods scalable to ton-scale production in structured forms

— |
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Role of Mosaic Materials

Tech transfer: Interface with LBNL and Inventys/Electricore
= Optimize scalable diamine-appended MOF production process
» Realize and test structured forms of the diamine-appended MOFs

Deliver 10-kg batches of Genl and Gen2 materials to Inventys
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Inventys: Rapid Cycle Temperature Swing Adsorption

THREE SIMPLE STEPS

Structured Sorbent

Drive Motor

Step 3: Cooling

After the CO, has been released, air is
used to cool the structured adsorbent,

preparing it for the adsorption step and
the process is started over again.
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Step 1.
Adsorption

As flue gas passes

through the
VeloxoTherm™
] Adsorbent Structure,

CO, clings to the
adsorbent while the
other gases pass

N

Step 2: Regeneration

After the structured adsorbent becomes
saturated with CO,, it is regenerated.
Low pressure steam is used to release
the CO, from the adsorbent.

Carbon Caphre Srrulationfor ndusty kepact



Role of Inventys

Formation of structured adsorbent
beds

Process development and testing:
powders - single bed test station
(VTS) - multi-bed process
demonstration unit (PDU) - pilot
unit at NCCC to test at 0.1 TPD
(RPV-RAM)

Process modeling and validation:
Process test data used to map
performance of process and inform
design of next stage test system
(VTS>PDU->RPV-RAM)

Preliminary analysis of NCCC test
data: total life-cycle capture
economics
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Updated Experimental Design and Work Plan

Year 2

Year 3

Genl production at kg
scale

Testing & modeling of
VeloxoTherm process

Synthesis of new amine-
appended MOFs (Gen2)
& scale-up

Stability and cycling
performance tests
Computational work to

predict amine-appended
MOFs

= Gen2 production at kg
scale

= Bench skid construction &
Initial shakedown and
baseline tests at NCCC

= Testing & modeling of
VeloxoTherm process
(Gen2)

= |In house continuous PDU
testing & characterization
of Genl1l/Gen2 materials

» Expanded computational

search

Project management and planning

Literature survey and synthesis

i) §
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Year 4

= Bench scale testing at
NCCC

= Life cycle and capture
economics analysis

= Extensive
characterization of
materials tested

= Gen3 materials synthesis
and comprehensive
characterization. Scale-
up to multigram.
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Project Timeline

ﬂ
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. YR|YR|YR|YR
Task Descriptions 1 3|4
@ Synthesis of amine-appended MOFs (Genl materials) m(m
% Characterization of the effect of water, SO,, and NO, on CO, adsorption .
{0 | properties of Genl materials
‘é’o Synthesis of new amine-appended MOFs (Gen2) m(m
o] Characterization of the effect of water, SO,, and NO, on CO,, adsorption .
© | properties of new adsorbents
a Characterization of materials fabricated by industrial partners N
g Synthesis and comprehensive characterization for new (Gen3) materials .
§ predicted in Year 3
S | Characterization of materials tested by partners m
Search optimal amine-appended MOFs within databases of reported materials | m
0 | Prediction of CO, binding energies for amine-appended MOFs u
g Search optimal amine-appended MOFs (Gen2 materials) among .
2 | computationally designed materials
g Prediction of relative CO, isotherm step position &
O
> | Extend the material design m
Prediction of mechanical strength for a real process N
el . > . BERKELEY LAB - » YoocesP?
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Project Timeline

Task Descriptions YlR YZR Y3R Y4R

Genl materials production for Inventys =

- Concept development, modeling & testing =

E Process & cycle design simulations =

% Bench-scale unit design & construction m| =
o' | Gen2 materials production for Inventys m|m
%‘ Comprehensive characterization of all relevant parameters for a real process | E|m
= In-house continuous PDU performance testing =
Bench scale field performance & durability testing =
i EEECEAT mosaic™ fovenrys KA Sjtcest. =




Project Success Criteria

Year

Success Criteria

Year 2

Prepare an adsorbent with >90% CO, capture from N,/CO, (= 85/15)
gas mixtures, a working capacity of >3 mmol/g with a smaller
temperature swing than MEA (80 °C), and a regeneration energy less
than 2.5 MJ/kg CO.,.

Year 3

Prepare an adsorbent that retains the same properties as that from
Year 2 after extended high-temperature cycling in the presence of
water and other flue gas contaminants(~2% H,O, 30 ppm SO,, 20
ppm NO,). Synthetic cost (based on approximate cost analysis) is
less than $75/kg.

Year 4

Demonstrate a unit adsorbent bed that exhibits Key Performance
Indicators’s (KPI’s) consistent with the capture economics of DOE 2nd
generation techno-economic targets for post-combustion capture
after 500 hours of operation.
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Developing Gen2 Materials

H
HgN/\/N\/\ HzN/\/\T/ HQN/\/N\/\/ HZN/\/N\

Currently testing MOF-diamine combinations for improved performance

w? CCSI 31
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A Promising Gen2 Material

30
Genl material
2 251 New material
g .
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0 humid CO, isobars

120 100 80 60 40
Temperature(°C)

= Sharper isobar with less hysteresis enables regeneration at 80-85 °C

= [nitial stability tests show thermal stability at high temperatures and humidity
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Plans for Future Testing and Development

Preliminary system testing of Genl material

» Genl production at kg scale, baseline cost estimates

= Concept feasibility testing and modeling of VeloxoTherm process
= [nitial planning and design of testing skid

Synthesis of improved diamine-appended MOFs (Gen2 materials)

= Synthesis and characterization of Gen2 materials - long term cycling,
breakthrough, stability testing

= Scale-up evaluation of Gen2 materials

Further materials improvements

» Search for better diamine-appended MOFs within screening database
= Structure-stability studies of diamine-appended MOFs (H,0O, SO,, NO,)
= Calculate H,0, SO,, and NO, binding energies
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