2018 NETL CO₂ Capture Technology Project Review Meeting

August 13, 2018

Amine-Appended Metal-Organic Frameworks as Switch-Like Adsorbents for Energy-Efficient Carbon Capture

Jeffrey B. Neaton, Jeffrey R. Long, and Maciej Haranczyk

Lawrence Berkeley National Laboratory

Project Overview

Funding

Total project funding

 DoE share: \$7.4M
 Cost share: \$755k

Overall Project Performance Dates

- Project start date: 8/1/2017
- Industrial partners start date: 8/1/2018
- Project end date: 7/31/2021

.....

Project Participants

- PI: Jeffrey Neaton (LBNL)
- Co-PI: Jeffrey Long (LBNL)
- Co-PI: Maciej Haranczyk (LBNL)
- Mosaic Materials (MOF production)
- Inventys (System development)
- Electricore (System development)
- CCSI² (Process modeling unfunded)

Overall Project Objectives

Development of a transformational technology based upon a diamineappended MOF for post-combustion CO_2 capture at a coal power plant

invent

Technology Background: MOFs for CO₂ Capture

mmen-Mg₂(dobpdc)

MOF channels have a diameter of 18 Å and are lined with open Mg²⁺ sites

materials

Dangling amines coat periphery of the channel leaving space for rapid CO₂ diffusion

McDonald, Lee, Mason, Wiers, Hong, Long J. Am. Chem. Soc. 2012, 134, 7056

inventys

.....

Technology Background: MOFs for CO₂ Capture

MOF channels have a diameter of 18 Å and are lined with open Mg²⁺ sites

materials

Dangling amines coat periphery of the channel leaving space for rapid CO₂ diffusion

McDonald, Lee, Mason, Wiers, Hong, Long J. Am. Chem. Soc. 2012, 134, 7056

inventys

Step-Shaped Isotherms via Cooperative CO₂ Binding

- Very little hysteresis upon desorption of CO₂
- Step shifts rapidly to higher pressure with increasing temperature

McDonald, Mason, Kong, Bloch, Gygi, Dani, Crocellà, Giordano, Odoh, Drisdell, Vlaisavljevich, Dzubak, Poloni, Schnell, Planas, Lee, Pascal, Prendergast, Neaton, Smit, Kortright, Gagliardi, Bordiga, Reimer, Long *Nature* **2015**, *519*, 303

materials

inventys

.....

Step-Shaped Isotherms via Cooperative CO₂ Binding

McDonald, Mason, Kong, Bloch, Gygi, Dani, Crocellà, Giordano, Odoh, Drisdell, Vlaisavljevich, Dzubak, Poloni, Schnell, Planas, Lee, Pascal, Prendergast, Neaton, Smit, Kortright, Gagliardi, Bordiga, Reimer, Long *Nature* **2015**, *519*, 303

materials

ĩnventys

CO₂ Inserts into the Metal-Amine Bonds

Insertion and proton transfer results in metal-bound carbamate

materials

Ammonium cation from neighboring site forms an ion pair with the carbamate

McDonald, Mason, Kong, Bloch, Gygi, Dani, Crocellà, Giordano, Odoh, Drisdell, Vlaisavljevich, Dzubak, Poloni, Schnell, Planas, Lee, Pascal, Prendergast, Neaton, Smit, Kortright, Gagliardi, Bordiga, Reimer, Long *Nature* **2015**, *519*, 303

înventys

Cooperative CO₂ Adsorption Mechanism

Siegelman, McDonald, Gonzalez, Martell, Milner, Mason, Berger, Bhown, Long J. Am. Chem. Soc. 2017, 139, 10526

Manipulating the Adsorption Step Position

Advantages

- High tunability of amine-appended framework materials
- Large working capacity due to stepped CO₂ adsorption
- High CO₂ selectivity over N₂, O₂, and H₂O
- Molecular level characterization is possible

Challenges

- Large scale and economical production of materials
- Durability and chemical stability is unknown
- Reduction of regeneration cost (temperature swing)

inventys

Technical Approach and Project Scope

materials

ĩnventys

CCSI

11

Project Schedule and Key Milestones (Year 1)

	Tasks	Milestones	Progress
Materials synthesis	Synthesis of diamine- appended MOFs (Gen1 materials)	Deliver a new material with a working capacity of >2.5 mmol/g	Complete
	Characterization of the effects of water, SO_x , and NO_x on CO_2 adsorption properties of Gen1 materials	Deliver a material that retains >90% of original CO ₂ uptake capacity after 20 cycles in the presence of H ₂ O, SO _x , NO _x	Complete (97% capacity retained)
Computation	Search optimal amine- appended MOFs within databases of reported materials	Propose 2 candidates whose CO ₂ uptake capacity is greater than 3.0 mmol/g	Pending
	Prediction of CO ₂ binding energies for amine- appended MOFs	Propose candidates having high CO ₂ binding energies (>70 kJ/mol)	Complete

CCSI²

Year 1 Progress: Gen1 Material Identified

- 2.4 mmol/g (9.1 wt %) working capacity with only a 60 °C temperature swing
- Approximate regeneration energy: 2.4 MJ/kg CO₂

materials

IATIONAL

HNOLOGY

.....

Milner, Siegelman, Forse, Gonzalez, Runčevski, Martell, Reimer, Long J. Am. Chem. Soc. 2017, 139, 13541

inventys

Gen1: Humid Breakthrough Experiments

 Breakthrough experiments with pre-humidified column and gas stream show sharp CO₂ breakthrough and high capacity

materials

inventys

Gen1: 1000 Adsorption/Desorption Cycles

 Stable to 1000 humid adsorption/desorption cycles under simulated flue gas conditions (diamine loading after experiment: 97%)

materials

Ĩnventys

ATIONAL

INOLOGY

Gen1: Thermal, CO₂, H₂O, and O₂ Stability

- Gen1 material shows excellent thermal stability under humid conditions, and stability to oxidation at high temperatures
- Infrared spectra show no evidence of urea formation
- Long-term storage in ambient conditions also reveals no change in performance

materials

Inventys

.....

CSI

Stability Comparison with PEI-MCM-41

Substantial capacity loss for PEI-MCM-41 after accelerated decomposition test

materials

inventys

Infrared spectra indicate urea formation

.....

Gen1 Stability: SO₂ Exposure Testing

Exposure time delivers 1 SO₂ per diamine or 2 SO₂ per diamine (300 ppm, 8 h)

Ĩnventys

89% of CO₂ uptake capacity retained in most aggressive test

materials

Gen1: A Mixed Mechanism for CO₂ Uptake

Solid-state NMR experiments allow form of adsorbed CO₂ to be determined

materials

Gen1: Proposed CO₂-Loaded Structure

CO₂-loaded structure based upon NMR and IR spectra and DFT calculations contains a 1:1 mixture of ammonium carbamate and carbamic acid groups

ammonium carbamate chain

H-bonded carbamic acid groups

DFT Predictions Match Measured Isosteric Heats

materials

Partners for Developing a Separation Process

MOF Manufacturing: Mosaic Materials

Separation System: Inventys (w/ Electricore)

Total funding for industrial partners: \$3M from DoE plus \$775k in cost share

inventys

Subcontracts and IP agreement are nearly finalized

materials

Mosaic Materials: Large-Scale MOF Production

Founded in 2014 to commercialize MOFs for gas separations Synthesis and testing laboratory in Berkeley, CA Producing kg-scale quantities of patent-protected adsorbents for:

- 1. CO₂ separations: flue gases, biogas, natural gas, air
- 2. Industrial chemicals: ethylene, propylene, CO, H₂S

Production methods scalable to ton-scale production in structured forms

Role of Mosaic Materials

- Tech transfer: Interface with LBNL and Inventys/Electricore
- Optimize scalable diamine-appended MOF production process
- Realize and test structured forms of the diamine-appended MOFs
- Deliver 10-kg batches of Gen1 and Gen2 materials to Inventys

Inventys: Rapid Cycle Temperature Swing Adsorption

THREE SIMPLE STEPS

Role of Inventys

- Formation of structured adsorbent beds
- Process development and testing: powders → single bed test station (VTS) → multi-bed process demonstration unit (PDU) → pilot unit at NCCC to test at 0.1 TPD (RPV-RAM)
- Process modeling and validation: Process test data used to map performance of process and inform design of next stage test system (VTS→PDU→RPV-RAM)
- Preliminary analysis of NCCC test data: total life-cycle capture economics

inventys

materials

Updated Experimental Design and Work Plan

Year 2

- Gen1 production at kg scale
- Testing & modeling of VeloxoTherm process
- Synthesis of new amineappended MOFs (Gen2) & scale-up
- Stability and cycling performance tests
- Computational work to predict amine-appended MOFs

Year 3

- Gen2 production at kg scale
- Bench skid construction & initial shakedown and baseline tests at NCCC
- Testing & modeling of VeloxoTherm process (Gen2)
- In house continuous PDU testing & characterization of Gen1/Gen2 materials
- Expanded computational search

Year 4

- Bench scale testing at NCCC
- Life cycle and capture economics analysis
- Extensive characterization of materials tested
- Gen3 materials synthesis and comprehensive characterization. Scaleup to multigram.

- Project management and planning
- Literature survey and synthesis

Project Timeline

	Task Descriptions	YR 1	YR 2	YR 3	YR 4
Synthesis & characterization	Synthesis of amine-appended MOFs (Gen1 materials)				
	Characterization of the effect of water, SO_x , and NO_x on CO_2 adsorption properties of Gen1 materials				
	Synthesis of new amine-appended MOFs (Gen2)				
	Characterization of the effect of water, SO_x , and NO_x on CO_2 adsorption properties of new adsorbents				
	Characterization of materials fabricated by industrial partners				
	Synthesis and comprehensive characterization for new (Gen3) materials predicted in Year 3				
	Characterization of materials tested by partners				
Computation	Search optimal amine-appended MOFs within databases of reported materials				
	Prediction of CO ₂ binding energies for amine-appended MOFs				
	Search optimal amine-appended MOFs (Gen2 materials) among computationally designed materials				
	Prediction of relative CO ₂ isotherm step position				
	Extend the material design				
	Prediction of mechanical strength for a real process				

mosaic* inventys

mm

BERKELEY LAB

LAWRENCE BERKELEY NATIONAL LABORATORY

CCSI² Carbon Capture Simulation for Industry

Project Timeline

	Task Descriptions	YR 1	YR 2	YR 3	YR 4
System Testing	Gen1 materials production for Inventys				
	Concept development, modeling & testing				
	Process & cycle design simulations				
	Bench-scale unit design & construction				
	Gen2 materials production for Inventys				
	Comprehensive characterization of all relevant parameters for a real process				
	In-house continuous PDU performance testing				
	Bench scale field performance & durability testing				

Project Success Criteria

Year	Success Criteria			
Year 2	Prepare an adsorbent with >90% CO_2 capture from N ₂ /CO ₂ (= 85/15) gas mixtures, a working capacity of >3 mmol/g with a smaller temperature swing than MEA (80 °C), and a regeneration energy less than 2.5 MJ/kg CO_2 .			
Year 3	Prepare an adsorbent that retains the same properties as that from Year 2 after extended high-temperature cycling in the presence of water and other flue gas contaminants(~2% H_2O , 30 ppm SO_x , 20 ppm NO_x). Synthetic cost (based on approximate cost analysis) is less than \$75/kg.			
Year 4	Demonstrate a unit adsorbent bed that exhibits Key Performance Indicators's (KPI's) consistent with the capture economics of DOE 2 nd generation techno-economic targets for post-combustion capture after 500 hours of operation.			

. 🏄

mosaic

inventys

۲.

ELECTRICORE

BERKEL

mm

LAB

LAWRENCE BERKELEY NATIONAL LABORATORY

CCCSI²

Developing Gen2 Materials

Currently testing MOF-diamine combinations for improved performance

materials

inventys

.....

A Promising Gen2 Material

Sharper isobar with less hysteresis enables regeneration at 80-85 °C

materials

Initial stability tests show thermal stability at high temperatures and humidity

Ĩnventys

CSI

Plans for Future Testing and Development

Preliminary system testing of Gen1 material

- Gen1 production at kg scale, baseline cost estimates
- Concept feasibility testing and modeling of VeloxoTherm process
- Initial planning and design of testing skid

Synthesis of improved diamine-appended MOFs (Gen2 materials)

- Synthesis and characterization of Gen2 materials → long term cycling, breakthrough, stability testing
- Scale-up evaluation of Gen2 materials

Further materials improvements

- Search for better diamine-appended MOFs within screening database
- Structure-stability studies of diamine-appended MOFs (H₂O, SO_x, NO_x)

inventys

Calculate H₂O, SO_x, and NO_x binding energies

