
Update on Pilot Unit of Sorbent Based Post-Combustion CO₂ Capture Project # DE-FE0012870 Dr. Jeannine Elliott and Dr. Fei Yi

August 15, 2018

TDA Research Inc. | Wheat Ridge, CO 80033 | www.tda.com

Project Objectives

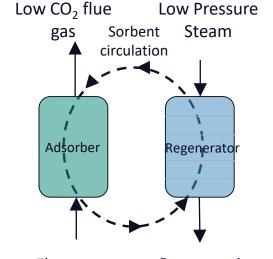
- The objective is to develop solid sorbent capture technology that captures CO₂ at less than \$40 per tonne without TS&M.
- Demonstrate alkalized alumina sorbent technology under realistic conditions at 0.5 MW_e (~10 tpd) scale in National Carbon Capture Center (NCCC) to collect data necessary for scale up to next level plant.

TDA CO₂ Capture on Supercritical 550 MW plant

Project Scope

DoE Project DE-FE0012870 Funding - Total Project \$6,480,377

- Budget Period 1: Optimization & Design
- Budget Period 2: Construction & Installation
 - Pilot Unit Construction
 - Sorbent Production Scale-up and Quality Assurance
 - Pilot Unit Installation
- Budget Period 3: Shakedown & Operation



TDA's Approach

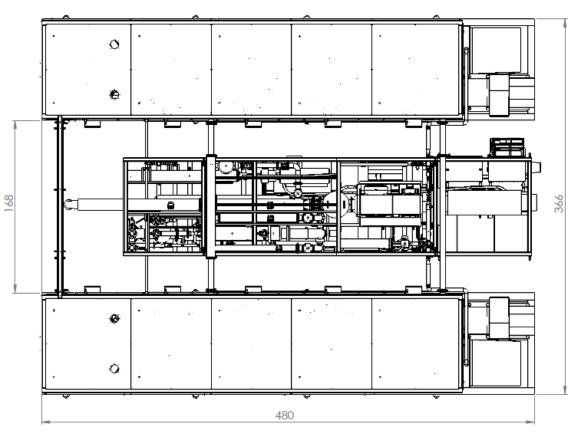
TDA Research has developed:

- A low-cost, alkalized alumina adsorbent
- A CO₂ capture process designed specifically for this sorbent (A unique CO₂ capture process to run adsorption and regeneration at near isothermal conditions)
- Multiple patents on the process

Flue gasRegeneration outlet1 atm, ~130 to 140 °Cwith CO2

Advantages over moving bed

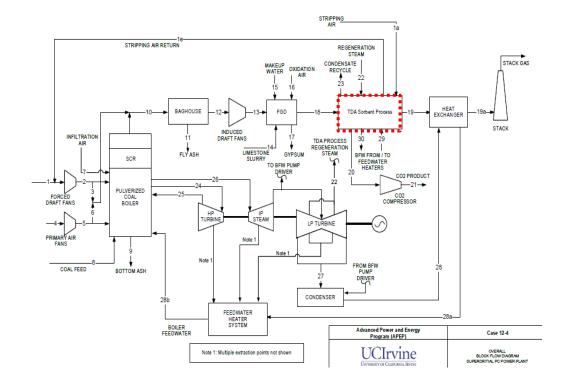
- Moving bed had expensive conveyors, although the beds would be smaller
- Selected Multiple fixed bed design
 - ✓ Basic duct work
 - ✓ Low cost construction
 - ✓ Simple bed design
 - Eliminates parasitic power needed to move the sorbent
- Lower overall cost than moving beds


Pilot Unit System 0.5 MW Demonstration

2 Sorbent Bed Trailers

- Sorbent trailers house 10 sorbent beds (5 in each trailer) and manifold piping
- Each trailer is insulated and heated to provide an isothermal environment

Service Unit/Instrument Trailer


- Pressure, temperature, and flow control for process gases
- Each process gas routed to both sorbent bed trailers
- Houses the control system and all electrical components for power allocation
- A full suite of on-board analyzers to evaluate system performance

Preliminary Techno-Economic Analysis

- Integration with greenfield supercritical
 550 MW coal fired power plant
 - CO_2 feed 13%
- Analysis followed DoE guidelines
- Work performed with University of California at Irvine (UCI)
 - Dr. Ashok Rao of Advanced Power and Energy Group developed ASPEN model around process and determine cost of CO₂ capture

TEA on Improved Process

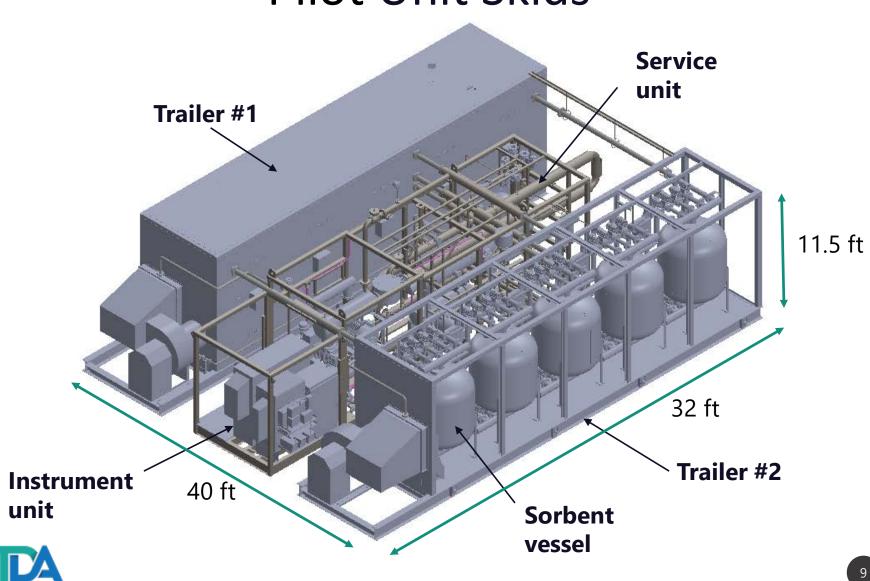
- Based on experimental data (SV, steam usage) for optimized process
- Boiler Feed Water used to heat flue gas (coal derived heat)
- Included costs of 10 beds, air blower, and condenser on air purge outlet
- Optimized design system demonstrated in benchscale experiments has \$41.2/tonne CO₂ capture without TS&M and \$58/tonne CO₂ avoided

	No	Amine		
	Capture	Capture	TDA	TDA
CO ₂ Capture Technology	Case 11	Case 12	Case 3	Case 4
Carbon Captured,%	0	90	90	90
Steam Turbine Power, KWe	580,400	662,800	658,313	658,848
Total Auxiliary Consumption, KWe	30,410	112,830	108,003	108,848
Net Power Output, KWe	550	550	550	550
% Net Plan Efficiency, HHV	39.3	28.4	29.51	29.85
As-received coal feed, kg/h	185,759	256,652	247,258	244481
Natural Gas Feed, kg/h	0	0	0	0
Raw Water Withdrawal, min ³ /min	20.1	38.1	34	33.8
1 rst year cost of electricity (COE), \$/MWh, 2007\$	58.9	100.9	92.8	94.7
1 rst year CO2 capture cost w/o TS&M, \$/tonne, 2007\$	-	42.1	38.0	37.0
1 rst year CO2 capture cost w/o TS&M, \$/tonne, 2011\$		46.9	42.4	41.2
1 rst year CO2 avoided cost w/o TS&M, \$/tonne, 2011\$		68.0	59.1	58.0

CEPCI(2011)/CEPCI(2007) = 585.7/525.4 = 1.11

$$Cost of CO_2 Captured = \frac{(COE_{with cc} - COE_{without cc})}{CO_2 Captured}$$

 CO_2 Capture cost = \$41.2/ tonne, \$2011



Pilot Unit Construction

Pilot Unit Skids

• Sorbent Trailers and Gas conditioning units were fabricated by Spring Fabrication, Inc. (200,000 sq. ft. facility, 220 employees) in Colorado Springs.

• Instrument control unit was fabricated at TDA.

Sorbent Trailers

Sorbent Trailers

The instrument and control cabinets made by TDA

High Voltage Power Enclosure

Instrument Unit / Electronics Cabinet

Skids set in place at Fabrication shop for FAT testing

Factory Acceptance Testing

Tests successfully completed:

- ✓ Turn on/off heaters, blowers
- Verify and control each pneumatic valve on the reactors and service unit
- Check analyzer signals to the control box
- Cycle the whole system
 with basic cycling program
- Confirmed beds hold pressure

Utility used: 480 V power, 90 psig shop air

Max Phillips and Greg McKinnon from Southern CO visited during FAT on October 11, 2017

Test Plan

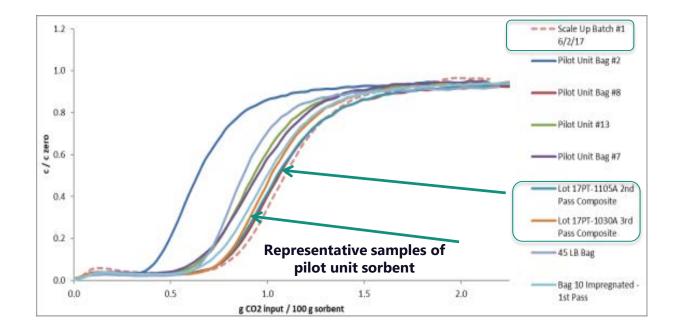
- The primary objective of the pilot unit field tests is to demonstrate the technical merits of this sorbent-based CO₂ capture process. Flue gas = 5000 lb/hr for 0.5 MW.
- Optimize cycle parameters to achieve the following goals:
 - Minimize the amount of regeneration steam used
 - Maximize the flue gas flow rate through the TDA system
 - Minimize purge gas flow
- We will also evaluate the process under both coal derived flue gas and simulated natural gas conditions (diluted flue gas).
- Demonstrate cyclic operation at steady state using the optimized adsorption cycle scheme.
- Evaluation at 90% capture and less than 90% capture rate.

Sorbent Production and Testing

- Sorbent was made by Porocel in Little Rock, AR
- Production was conducted over 3 weeks
- 22 supersacks and 135 bags (45 lbs) produced

Pilot Unit Sorbent Characterization

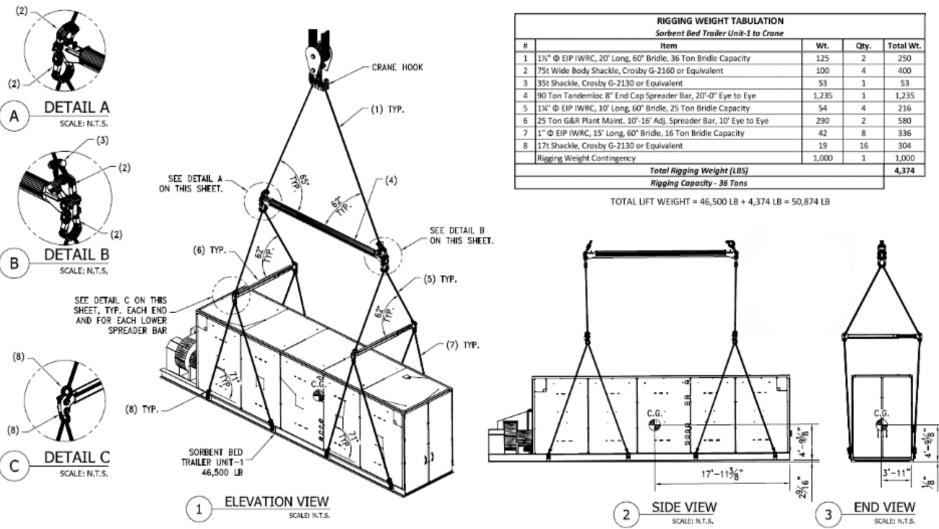
Batch number	Bulk density (g/ml)	BET Surface Area (m²/g)	BJH Adsorption Cumulative Pore Volume of pores (cm ³ /g)	Adsorption Average Pore Diameter (nm)
Pilot Unit	0.84	99.3	0.3	12.0
Batch 1 (Scale up batch)	0.728	84.3	0.214	10.15
TDA-812 (Laboratory Sorbent)	0.616	145	0.53	10.3


• Physical properties were within expected range

- Material scaled up on 6" extruder is denser
- Sorbent delivered to NCCC in early November 2017

Single Bed Adsorption Breakthrough

- Samples of multiple bags and composites of all bags were evaluated at TDA
- Sorbent performance of composite samples were similar to previous scale up batch made at Porocel (Batch #1)


Skid Installation

Four trucks shipped the three skids plus connecting piping and instruments from Colorado to Alabama in October 2017

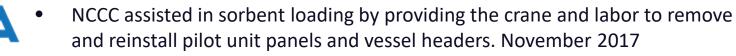
Lift Plan

Pilot Unit installed at Pilot Bay #2 at the NCCC PC4 per approved lift plan

Installation at NCCC

October 23-24, 2017

Sorbent Loading


Sorbent Loading at NCCC

Sorbent dispenser with a shut-off valve.

System Integration

System Integration

- NCCC completed inter-connection for the flue, steam, cooling water, drain lines, pneumatic air, electrical and signal connections.
- TDA reinstalled pneumatic valve boxes to operate vessel mounted shut-off valves.
- TDA reinstalled all analyzers and instruments contained within the analyzer cabinet and terminated the heat tracing on all sample lines to keep gas samples in the gas phase.
- TDA vacuumed out bottom valve headers for dust collected from sorbent loading.

Shakedown

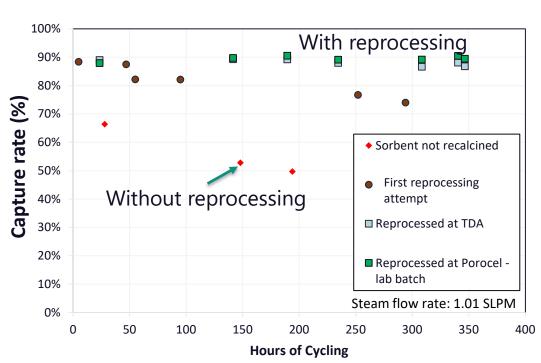
- A pre-operation safety review on site at NCCC conducted on January 9, 2018.
- The control system was powered up and run in 24-hour mode.
- The following items have been checked out: manual control for the blowers and heaters, open/close for all the pneumatic valves, the PID control for 13 heat tracing zones, safety monitoring, reactor sequencing, real-time data processing and historical data log.
- Issues related to hard freeze in January were addressed.
- AC unit for electronics box was damaged and was shipped back to manufacturer for repaired.
- Gaston 5 plant shutdown end of February through mid March due to low loading. No steam or flue gas were available during this time.

Additional Sorbent Evaluation

- We used the time during AC repair and flue gas shutdown to further evaluate the pilot unit sorbent.
- We found the scaled-up sorbent degraded significantly during extended cycling .
- This degradation is not acceptable and had not happened with any earlier sorbent batches.

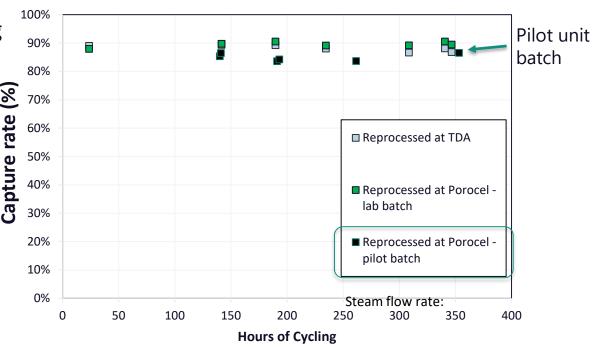
Sorbent	CO ₂ loading, wt%	CO ₂ capture rate
Batch 1	0.82	89.3%
Pilot Batch	0.31	66.0%

 Additional characterization determined the sorbent was not fully calcined. Humidity had impacted QA/QC checks.


TDA Bench-scale test unit

- Ten 400 cc Fix Bed Reactors with continuous Adsorption and Regeneration
- ✓ Automated control

Sorbent Reprocessing


- Laboratory testing demonstrated that the sorbent could be reprocessed to achieve good performance and stability
- Experiments were conducted to develop the best reprocessing method
- Reprocessing demonstrated in laboratory testing at TDA and Porocel
- Lab batch validated in cycling tests
- Sorbent was unloaded by J.V. Industrial Companies and returned for retreatment

Pilot Unit Sorbent Reprocessing and Testing

- Pilot unit sorbent successfully reprocessed by the manufacturer in late June 2018
- Sorbent was evaluated at TDA for 350 hours of cycling
 - Performance stabilized by reprocessing
- Some loss of sorbent was unavoidable in reprocessing (breakage during removal, loss in handling, shrinkage in retreatment etc.)
- Reprocessed sorbent was loaded into 8 beds at the pilot unit
- 2 beds filled with modified commercial alkalized alumina (lower performing)

Current Status

- Sorbent reloaded mid-July 2018 and system closed up
- Shakedown continued until NCCC Gaston U5 shutdown on July 25, 2018
- Aug 17 November 1 outage planned at NCCC
- Pilot Unit Operation to start in November
 - Parametric testing
 - Steady state testing

National Carbon Capture Center located at the E.C. Gaston power plant (Wilsonville, Alabama)

Summary

- Pilot-Unit construction and FAT testing completed.
- Pilot-Unit sorbent produced.
- System delivered and installed at NCCC. Sorbent loaded into 10 reactors.
- System integrated into NCCC site at Pilot Bay #2.
 - NCCC completed inter-connection for the flue, steam, cooling water, drain lines, pneumatic air, electrical and signal connections.
- Shakedown performed in January/February 2018. NCCC shutdown late February (no steam/flue gas).
- Pilot-Unit Sorbent batch showed expected performance initially. Extended cycling test run at TDA showed that the sorbent had poor stability.
- The sorbent was unloaded, reprocessing conditions defined, and the sorbent was successfully retreated by the manufacturer.
- The sorbent is reloaded at NCCC. Work will continue when current outage is completed November 2018.

Acknowledgements

- Project funding provided under DoE Contract # DE-FE0012870
- DoE: Andy O'Palko and Lynn Brickett
- NCCC: Tony Wu

