
Upcycled 'CO₂-negative' concrete for construction functions

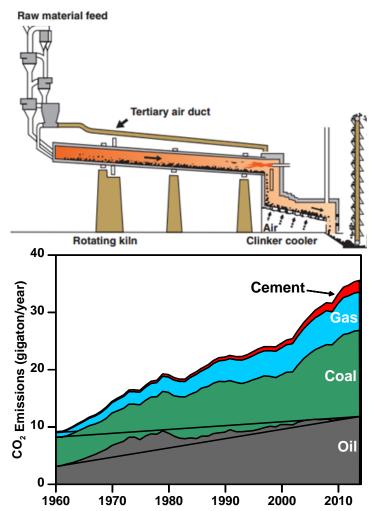
<u>Prepared By:</u> Erika Callagon La Plante, Ph.D. Assistant Project Scientist University of California, Los Angeles (UCLA), CA 90095 Phone: (310) 860-6212, Email: <u>ecallagon@ucla.edu</u>

<u>Collaborators</u>: G. Sant, L. Pilon, N. Neithalath, S. Vallejo, A. Godara

Developed for: NETL CO₂ Capture Technology Project Review Meeting, August 13-17,2018, Pittsburgh, Pennsylvania

Erika La Plante

Presentation outline


- Project Overview: Background, overall project objectives and timeline, funding, participants
- Technology Background: Upcycled concrete production process, advantages and challenges
- Technical Approach/Project Scope: Experimental design and work plan, key milestones, success criteria
- Progress and Current Status of Project
- Summary and future work

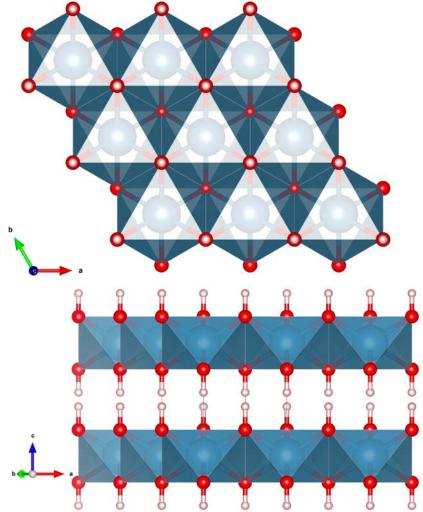
Civil and Environmental Engineering

Upcycled 'CO₂-negative' concrete

- 33 billion tons of concrete, 4.5 billion tons of portland cement (OPC) produced annually
- 0.9 ton CO₂ emitted per ton OPC produced—from energy input for processing at high T (~1600 °C) and CO₂ emitted during calcination
- Identify routes for large-scale utilization of CO₂ as a precursor in beneficial products and processes, by mineralization as stable carbonate compounds with cementitious properties

Erika La Plante

Civil and Environmental Engineering



Low-temperature synthesis of portlandite

 Hydrated lime is an efficient material for CO₂ uptake (max. CO₂ uptake = <u>59%</u> by mass)

 $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$

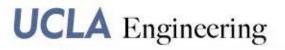
- Industrial methods of portlandite production require energy- and CO₂-intensive calcination of limestone
- Low-temperature synthesis of portlandite using industrial byproducts and waste heat

Civil and Environmental Engineering

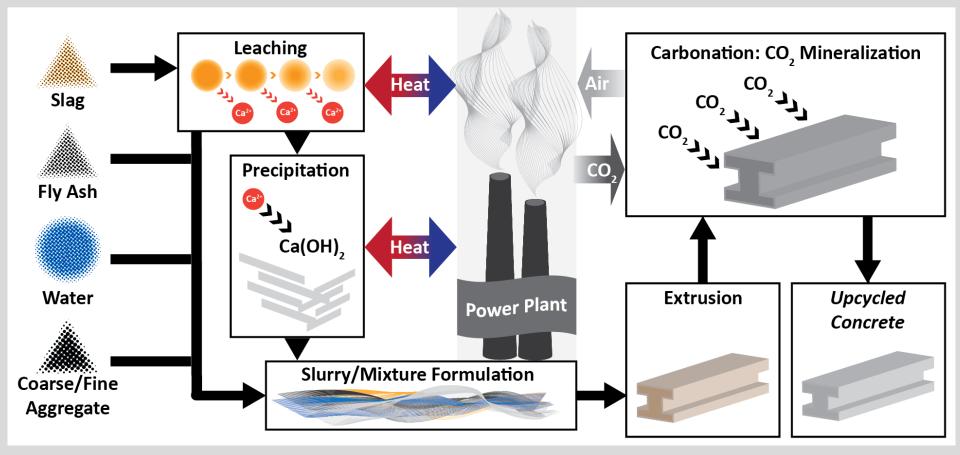
Objectives of the upcycled concrete technology

Upcycling industrial wastes and CO₂

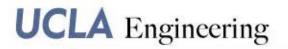
 Utilize coal combustion and metal processing wastes as precursors for scalable CO₂ mineralization

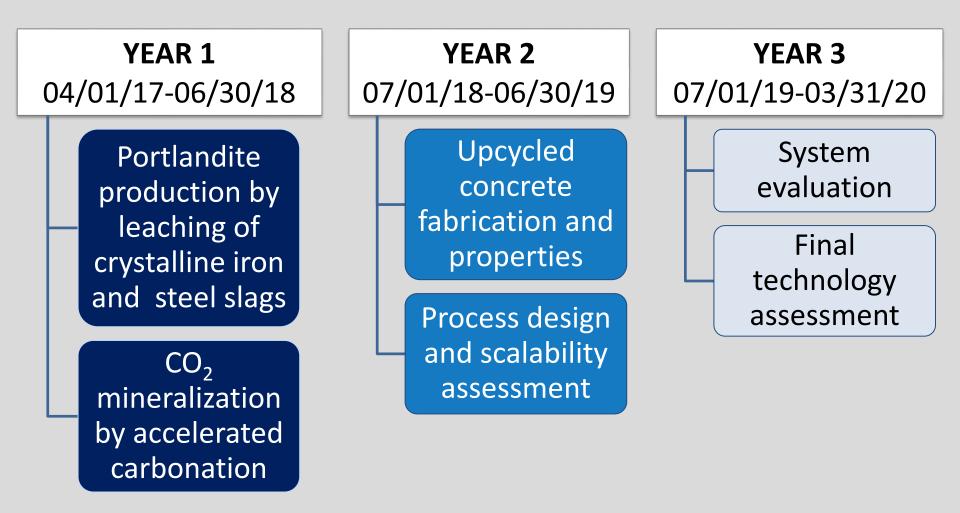

Process design

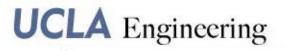
 Develop an integrated, 'bolt-on' technology solution for upcycled concrete production incorporating aspects of Ca-leaching, Ca(OH)₂ precipitation, mixture formulation, and structural shape-stabilization, while maximizing CO₂ uptake


OPC concrete replacement

 Develop a novel CO₂-negative upcycled concrete that is performanceequivalent or superior to OPC-based concrete

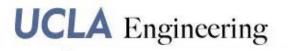

Erika La Plante


Overview of CO₂-negative upcycled concrete production process



Erika La Plante

Project scope and current status

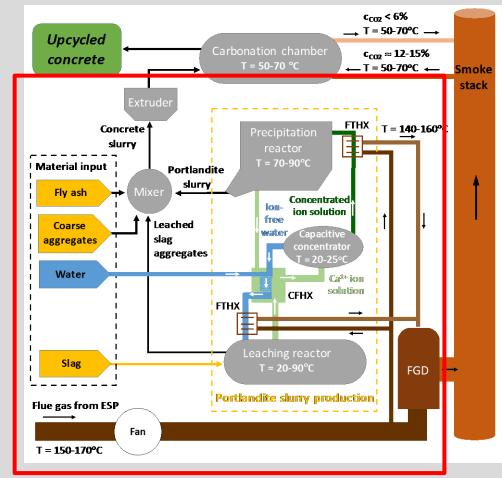


Project funding profile

	Budget F	Period 1	Budget	Period 2	Budget P	Period 3	Total Droject			
	04/01/17-	06/30/18	07/01/18-06/30/19		07/01/19-0	03/31/20	Total Project			
	Gov't Share	Cost Share	Gov't	Cost Share	Gov't	Cost	Gov't	Cost Share		
	Gov t Share	COSt Share	Share	COSt Share	Share	Share	Share			
UCLA	\$344,436	\$155,533	\$274,142	\$119,467	\$181,421	\$25,000	\$799,999	\$300,000		
ASU	\$75,155	\$18,480	\$66,541	\$15,583	\$58,304	\$15,937	\$200,000	\$50,000		
Total	\$419,591	\$174,013	\$340,683	\$135,050	\$239,725	\$40,937	\$999,999	\$350,000		
Cost										
Share	71%	29%	72%	28%	85%	15%	74%	26%		

Project participants:

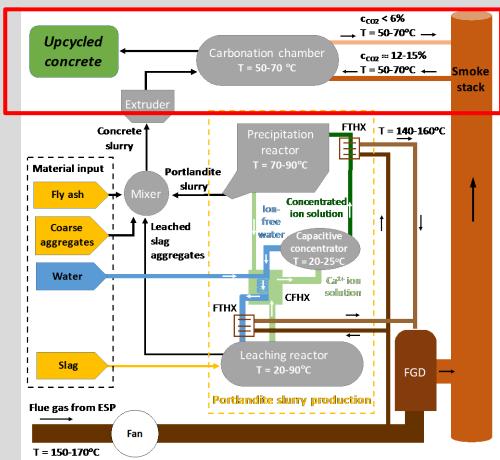
- University of California, Los Angeles (UCLA)
- Arizona State University (ASU)
- Boral North America


Presentation outline

- Project Overview: Background, overall project objectives and timeline, funding, participants
- Technology Background: Upcycled concrete production process, advantages and challenges
- Technical Approach/Project Scope: Experimental design and work plan, key milestones, success criteria
- Progress and Current Status of Project
- Summary and future work

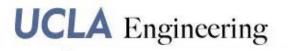
Civil and Environmental Engineering

Process diagram for integrated production of upcycled concrete


- Securing reclaimed solid reactants
- Ca extraction (leaching) within the leaching reactor
- Concentration of leaching solution in Ca, followed by Ca(OH)₂ precipitation
- Formulation of a rheologyoptimized slurry

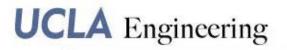
Civil and Environmental Engineering

Process diagram for integrated production of upcycled concrete


- Shape-stabilization of slurry into the form of a structural section (beam, column, etc.)
- Contacting structural section with flue-gas borne CO₂ within a carbonation chamber – *"upcycled concrete"* section
- Low-grade heat sourced from flue gas prior to, and following, desulfurization to optimize kinetics

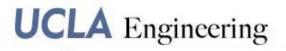
Civil and Environmental Engineering

Advantages of *upcycled concrete* technology and practical considerations


- Reduce construction period with precast/prefabricated components, compared to traditional "cast-in-place" construction, while ensuring repeatability and high quality
- Utilize CO₂ and waste heat carried by the flue gas in a typical coalfired power plant, and reject waste streams (e.g., crystalline slags, non-compliant fly ash in landfills and ash ponds)
- Path to carbon neutral/negative cementation through the production of hydrated lime, Ca(OH)₂
- Considerations on (1) compositional heterogeneity (leaching/carbonation potential) of fly ash and slag, (2) carbonation kinetics, (2) concrete workability and (3) mechanical properties

Presentation outline

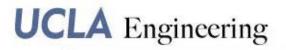
- Project Overview: Background, overall project objectives and timeline, funding, participants
- Technology Background: Upcycled concrete production process, advantages and challenges
- Technical Approach/Project Scope: Experimental design and work plan, key milestones, success criteria
- Progress and Current Status of Project
- Summary and future work



Experimental design and work plan

- 1. Portlandite production by leaching of crystalline slags
- 2. CO₂ mineralization by accelerated carbonation
- 3. Upcycled concrete fabrication and properties
- 4. Process design and scalability assessment
- 5. System evaluation
 - System procurement and construction
 - Integrated laboratory-scale testing using simulated flue gas
- 6. Final technology assessment
 - Scalability assessment and economic feasibility study
 - Lifecycle and technology gap analyses

Erika La Plante

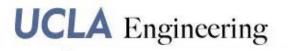

Key milestones

					Budget Period 2			_				
		1/17	7 - 6	/30	/18	7/1/	/18 -	6/30	/19	7/1/1	.9 - 3/	31/20
	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q 9	Q10	Q11	Q12
Leaching rate and extent for 3 slag types												
3 different CO ₂ uptake levels (0.06-0.12 g												
CO_2/g solid) with blended fly ash and $Ca(OH)_2$												
Rheology characteristics for upcycled												
concrete (UC) with 3 fly ash-Ca(OH) ₂ blends												
Shape-stable upcycled concrete having												
compressive strength \geq 15 MPa												
Process design for lab-scale test unit with												
production throughput of 10-100 kg/day UC												
Construction of lab-scale test unit above												
Production throughput of 10-100 kg/d UC,												
with CO ₂ uptake of 0.06-0.12 g CO ₂ /g solid												
Scalability, lifecycle CO ₂ footprint and techno-												
economic feasibility												
Technology Gap Analysis												

Erika La Plante

NETL CO₂ Capture Technology Project Review Meeting, August 13-17, 2018

Slide 15 of 35


Success criteria and decision points

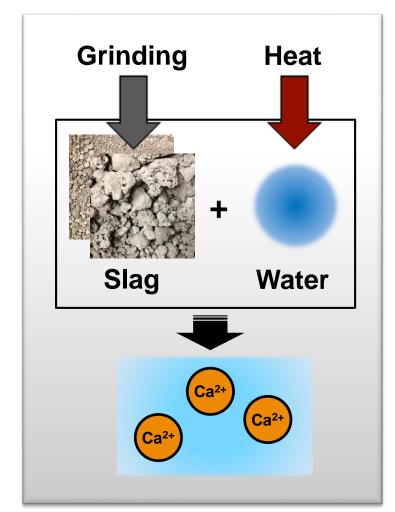
 Completion of BP 2 Compressive strength of 15 MPa Lifecycle footprint that is >75% smaller than OPC-concrete of equivalent performance grade (preliminary assessment) Design of laboratory-scale, integrated concrete production system with production throughput of 10-100 kg/day of upcycled concrete Real-time CO₂ uptake of the lab-scale test unit within 20% of the estimated "carbonation potential" Lifecycle footprint that is >75% smaller than OPC-concrete of equivalent performance grade (final assessment) Conceptual scaled-up process design and completion of technical and economic feasibility study, market assessment, lifecycle analysis, and technology gap analysis 	Completion of BP 1	 Carbonation characteristics of fly ash and leached slag, and the process conditions for carbonation of upcycled concrete mortar The critical steps (leaching, portlandite production, and carbonation) can be carried out in 24-to-168 hours or less
 Completion of BP 2 Lifecycle footprint that is >75% smaller than OPC-concrete of equivalent performance grade (preliminary assessment) Design of laboratory-scale, integrated concrete production system with production throughput of 10-100 kg/day of upcycled concrete Real-time CO₂ uptake of the lab-scale test unit within 20% of the estimated "carbonation potential" Lifecycle footprint that is >75% smaller than OPC-concrete of equivalent performance grade (final assessment) Conceptual scaled-up process design and completion of technical and economic feasibility study, market assessment, lifecycle analysis, and 		
 Completion of BP 3 Conceptual scaled-up process design and completion of technical and economic feasibility study, market assessment, lifecycle analysis, and 		 Lifecycle footprint that is >75% smaller than OPC-concrete of equivalent performance grade (preliminary assessment) Design of laboratory-scale, integrated concrete production system with
 Completion of BP 3 Conceptual scaled-up process design and completion of technical and economic feasibility study, market assessment, lifecycle analysis, and 		
		 estimated "carbonation potential" Lifecycle footprint that is >75% smaller than OPC-concrete of equivalent performance grade (final assessment) Conceptual scaled-up process design and completion of technical and economic feasibility study, market assessment, lifecycle analysis, and

Erika La Plante

NETL CO₂ Capture Technology Project Review Meeting, August 13-17, 2018

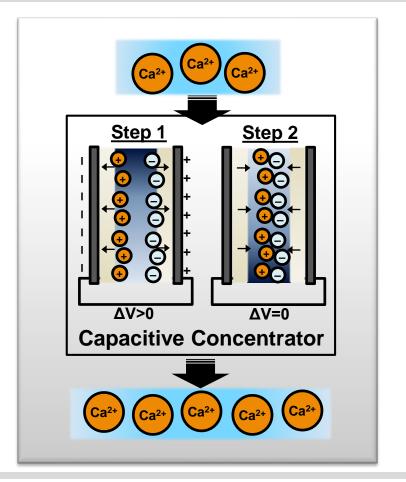
Slide 16 of 35

Presentation outline


- Project Overview: Background, overall project objectives and timeline, funding, participants
- Technology Background: Upcycled concrete production process, advantages and challenges
- Technical Approach/Project Scope: Experimental design and work plan, key milestones, success criteria
- Progress and Current Status of Project
- Summary and future work

Civil and Environmental Engineering

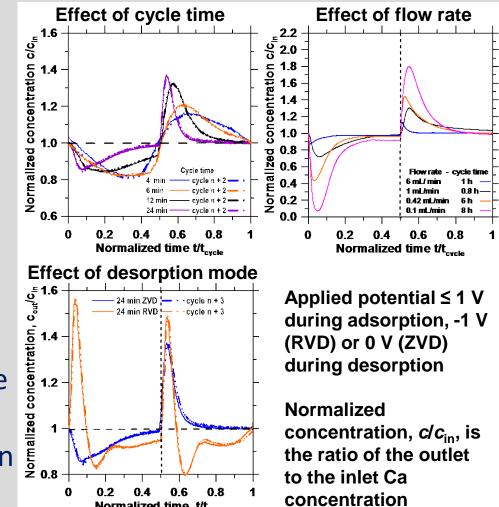
Sourcing of Ca from slags


- Slags contain about 30-50% CaO by mass – Ca leaching potential of ~0.2–0.3 g per g slag
- Crystalline slags, which are used as low-value aggregates, are the focus of our process
- Up to 10 mM (400 ppm) Ca leached in water after 24 hours
- Rapidly evolves to a highly alkaline solution amenable to portlandite precipitation (final step)

Civil and Environmental Engineering

Enhancing Ca concentrations to reach Ca(OH)₂ (portlandite) saturation

- Next step involves increasing Ca concentrations in the leachate to reach Ca(OH)₂ saturation
- Capacitive concentration cell with activated carbon or stainless steel electrodes
- As voltage is applied, ions migrate and adsorb on electrode surfaces; when voltage is reversed (or changed to zero), ions desorb, concentrating the flowing solution



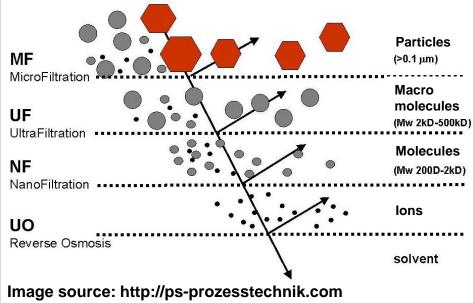
Erika La Plante

Civil and Environmental Engineering

Capacitive concentration of CaCl₂ solutions

- Initial experiments used 10 mM CaCl₂ as inlet solution – easily handled, high solubility of CaCl₂ in water, and represents a solution rich in Ca²⁺ ions
- **Concentration factor increases** with decreasing flow rate and increasing cycle time, up to a value of 1.8x
- Slag leachates are highly alkaline – substantial decrease in extent of desorption (and concentration factor) for Ca(OH)₂ solutions

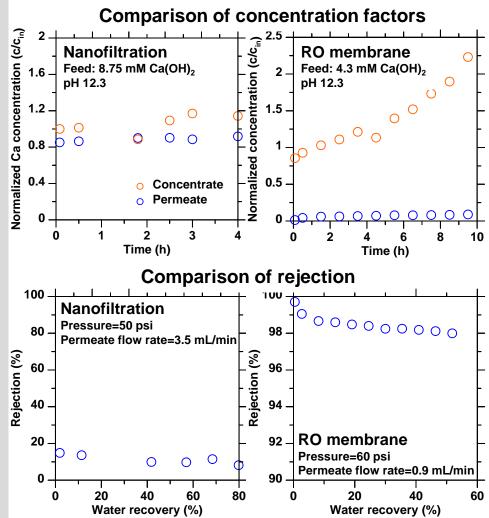
Normalized time, t/t


Erika La Plante

Civil and Environmental Engineering

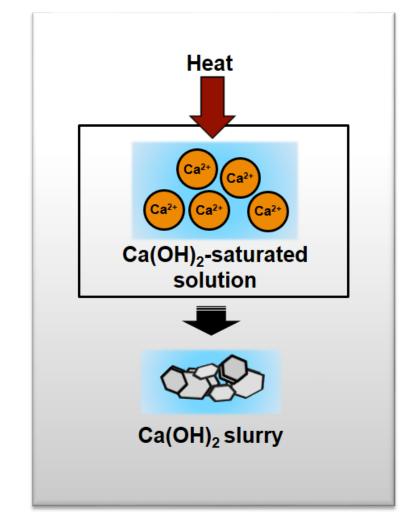
Alternative routes to concentration of alkaline Ca-containing solutions

- Capacitive concentration is not appropriate for alkaline solutions containing high [Ca]
- Stainless steel and nickel are electrochemically more inert than carbon under the relevant solution conditions, but their performance is limited by low SA
- Activated carbon electrodes have superior SA, but unstable in the presence of Ca


Membrane filtration which operates based on size exclusion and/or electrostatic repulsion is an alternative process to concentrate Ca²⁺ ions

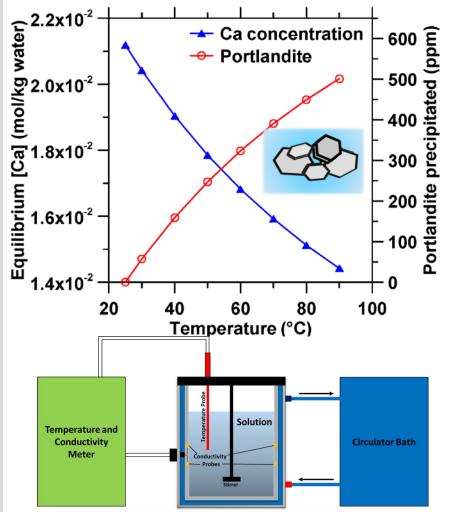
Civil and Environmental Engineering

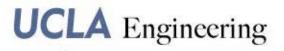
Concentration of Ca(OH)₂ solutions


- Ca concentration factor for Ca(OH)₂ solutions reached up to >2x using reverse osmosis membrane (vs. <1.2x using nanofiltration)
- RO membrane showed greater Ca rejection (>98%) than nanofiltration (<20%)
- RO membrane filtration suitable for concentration of alkaline Ca-rich solutions

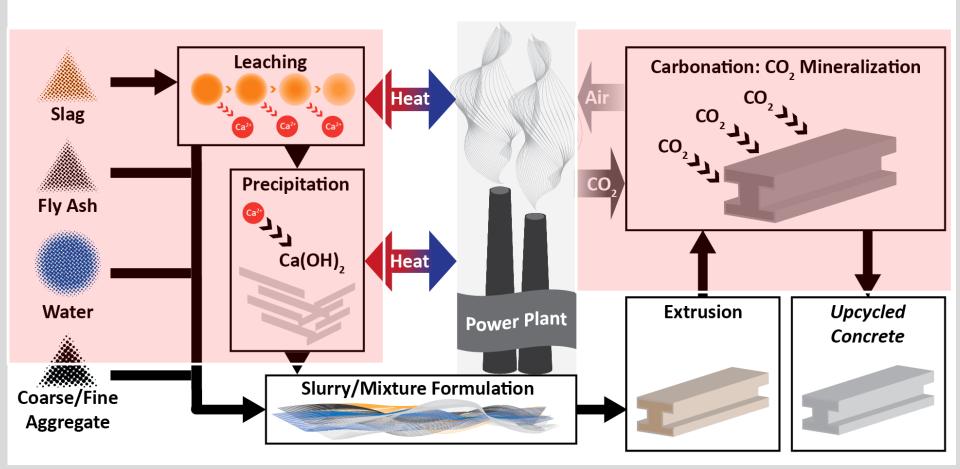
Civil and Environmental Engineering

Temperature ramping to induce precipitation

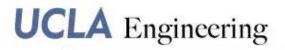

- Portlandite solubility decreases with increasing temperature
- Up to 500 ppm of portlandite can be precipitated from a saturated solution by temperature ramping
- pH adjustment is not necessary because of the alkaline nature of the slag leachate
- Precipitated portlandite is added to upcycled concrete formulation for subsequent carbonation



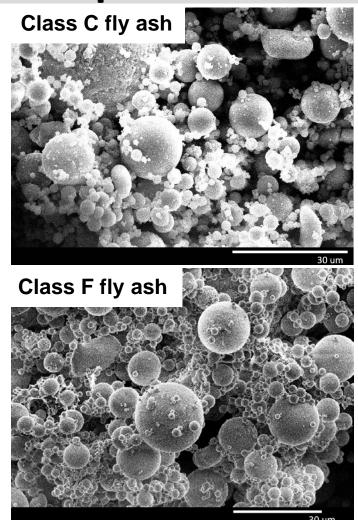
Civil and Environmental Engineering


Temperature ramping to induce precipitation

- Portlandite solubility decreases with increasing temperature
- Up to 500 ppm of portlandite can be precipitated from a saturated solution by temperature ramping
- pH adjustment is not necessary because of the alkaline nature of the slag leachate
- Precipitated portlandite is added to *upcycled concrete* formulation for subsequent carbonation

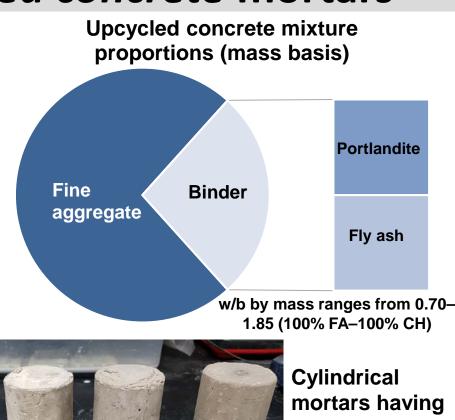

Carbonation of *upcycled concrete* mortars

Erika La Plante


NETL CO₂ Capture Technology Project Review Meeting, August 13-17, 2018

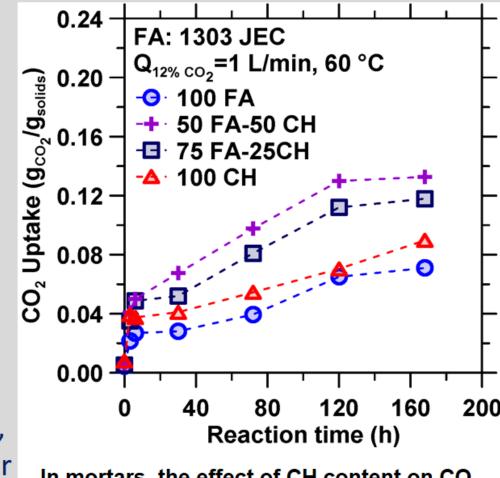
Slide 25 of 35

Carbonation of fly ash and portlandite


- Fly ash is a coal combustion byproduct which has cementitious properties and potential for CO₂ uptake
- Depending on type, can sequester up to 0.05–0.3 g CO₂/g (0.59 for portlandite, CH)
- Carbonation of *suspensions* of CH–FA blends showed linear scaling of CO₂ uptake with CH
- Mortar samples prepared to represent *upcycled concrete*

Civil and Environmental Engineering

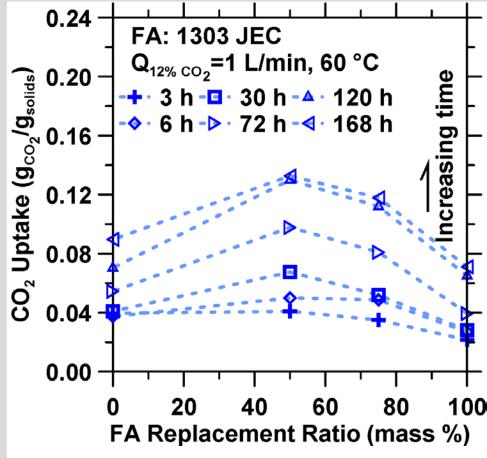
Carbonation of *upcycled concrete* mortars


- Mortars cured at 45 °C for 5 h, then removed from molds prior to carbonation
- Carbonation carried out in reactors by flowing a gas mixture containing 12% CO₂ (v/v) at a rate of 1 slpm
- TGA carried out on powder samples (extracted using a drill) to evaluate temporally evolving CO₂ uptake for the different mortar compositions

Civil and Environmental Engineering

Carbonation of *upcycled concrete* mortars

- CO₂ uptake increased with CH content, up to a point–not a simple linear scaling
- Optimum carbonation levels obtained for moderate dosages of CH (~50% by mass)
- Microstructure effects revealed and can be explained by (1) higher water content in CH-rich mixtures and/or (2) rapid carbonation of CH-rich mixtures, forming an outer carbonate layer having low porosity

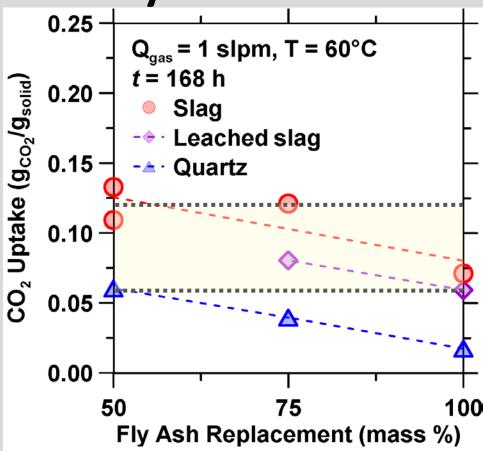

In mortars, the effect of CH content on CO₂ uptake is not a simple linear scaling

Erika La Plante

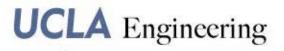
Civil and Environmental Engineering

Carbonation of upcycled concrete mortars

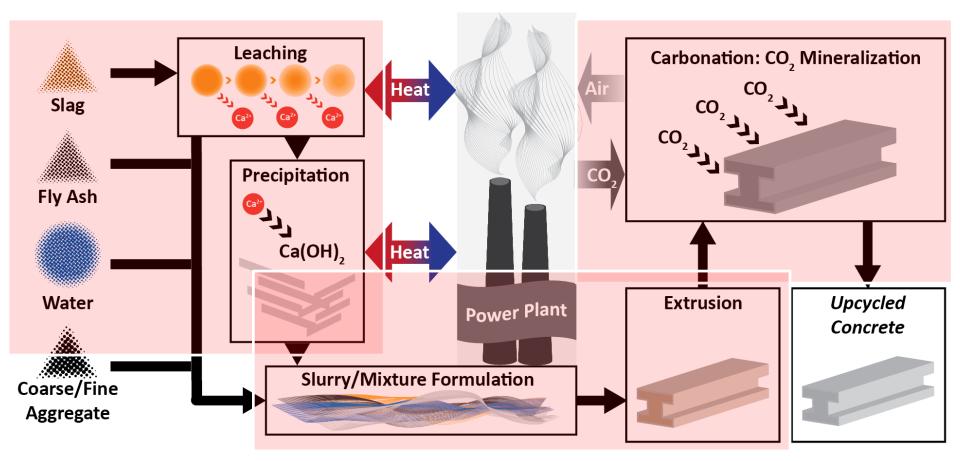
- CO₂ uptake increased with CH content, up to a point–not a simple linear scaling
- Optimum carbonation levels obtained for moderate dosages of CH (~50% by mass)
- Microstructure effects revealed and can be explained by (1) higher water content in CH-rich mixtures and/or (2) rapid carbonation of CH-rich mixtures, forming an outer carbonate layer having low porosity


In mortars, the effect of CH content on CO₂ uptake is not a simple linear scaling

Erika La Plante


Civil and Environmental Engineering

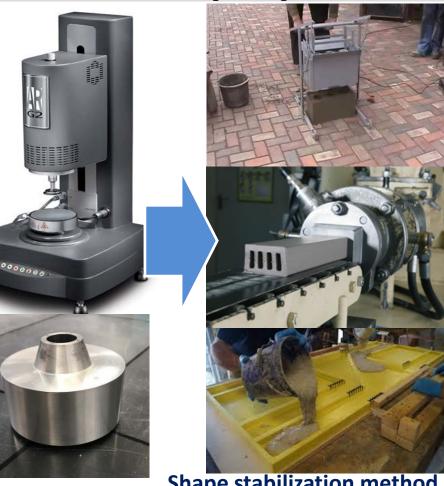
CO₂ uptake in portlandite-fly ash mortars


- Type of aggregate influenced CO₂ uptake – slag contributed significantly to carbonation
- Target CO₂ uptake of 6–12% achieved using ground asreceived and leached slag
- Carbonation rates decreased over time – significant uptake at t ≤24 h
- Weak dependence on temperature over the range 45– 85 °C

Target CO_2 uptake of 6–12% reached at 168 h for slag-containing mixtures having \leq 50% CH

Fabrication of *upcycled concrete* mortars for carbonation

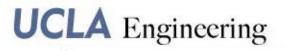
Erika La Plante


NETL CO₂ Capture Technology Project Review Meeting, August 13-17, 2018

Slide 31 of 35

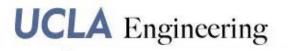
Civil and Environmental Engineering

Upcycled concrete fabrication and properties

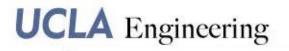

- Determine mixture proportions to optimize rheology (yield stress, plastic viscosity, suspension stability), workability
- Mixing ratios between the fly ash-portlandite-slag particulate blends, fine aggregates, water and chemical admixtures
- Select suitable shape stabilization process
- Optimize mechanical properties (compressive, flexural strength, fracture properties, etc.)

Laboratory tests

Shape stabilization method based on application


Erika La Plante

Process design and system evaluation


- Establish process design for laboratory-scale demonstration of integrated *upcycled concrete* production system
 - Component selection and design
 - System design and process optimization
 - Operating procedures and test plan
- Perform test runs using simulated coal-fired power plant flue gas
- Produce upcycled concrete with different CO₂ uptake levels
- Performance data from experimental test runs: CO₂ uptake, mass flow rate, production throughput, energy consumption, etc.

Summary

- Upcycled 'CO₂-negative' concrete project utilizes coal combustion and metal processing wastes to develop an integrated technology solution for the production of an OPC concrete replacement, while maximizing CO₂ uptake
- In the first year, we have demonstrated portlandite synthesis from crystalline slags and CO₂ uptake levels of 6– 12% by mass of solid reactants
- Ongoing work includes the rheological characterization of upcycled concrete formulations and process design, including component selection for the laboratory scale upcycled concrete reactor

Acknowledgments

- DOE-NETL Project DE-FE0029825
- Project Manager: Andrew Jones

