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Project Summary
• The objective is to optimize the Pressurized Oxy-Combustion 

(POxC) process to minimize the Cost of Electricity (COE)
• System analysis and design work to optimize POxC process, 

including thermal management, heat integration, power cycle 
optimization using process design and modeling supported with 
Aspen Plus® process simulations

• Develop a new chemical absorbent-based CO2 purification system to 
remove the residual oxygen that contaminates the recovered CO2

• Major Project Tasks
• Sorbent Optimization and Evaluation

• Performance validation via long-term cycling tests
• Process, System Design and Modeling
• Techno-economic analysis 

• Various configurations with different ASU and O2 removal options
• High fidelity engineering analysis and process simulation
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Project Partners

Project Duration
• Start Date = October 1, 2016
• End Date = September 30, 2019
Budget
• Project Cost = $1,375,042
• DOE Share = $1,099,998
• TDA and UCI = $275,044
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Oxy-Combustion & Carbon Capture
• In oxy-combustion fuels is 

burned in O2 instead of air, 
which results in a flue gas of 
primarily CO2 with trace 
levels of impurities

• POxC reduces energy and 
capital costs of the 
equipment used to purify 
and compress the CO2

• DOE/NETL objective is to 
optimize the POxC process 
to limit the COE increase to 
less than 20% over the no-
capture case

• The main cost contributors to 
POxC process includes:
• Air Separation Unit 
• CO2 Purification system
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Source: Cost of Electricity for Low Pressure 
Oxy-Combustion Technologies (NETL 2012).
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Air Separation Options
 ASU is one of the largest cost 

contributors to oxy-combustion 
(consumes over 5% of plant power 
and constitutes ~20% of plant cost)

 

 Cryogenic air separation is the 
choice of technology at large-scale
 600 MW plant requires ~170 ton 

O2/day
 Cryo-separation is highly energy 

intensive due to the thermal 
inefficiencies inherent in the low 
operating temperatures

 Alternatives
 Ion Transport Membranes

– High TRL
 Sorbent-Based Air Separation 

System (TDA Technology 
developed under DE-FE0026142)

– Low TRL

Source: Air Products and Chemicals, Inc.

Source: Kobayashi, 2002
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Process Optimization Case Matrix
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Case Power Cycle
psig/°F/°F

Subsystem Concept Evaluated Oxidant Sulfur
Removal

1 (Base) Supercritical Steam 
3500/1110/1150

Current ASU 95% O2 Cryogenic ASU Wet
FGD

2
Supercritical Steam Advanced O2 Membrane w/ Preheat in 

Boiler
~100% Advanced O2 Membrane (Ion 
Transport)

Wet
FGD

3
Supercritical Steam Advanced O2 Membrane w/ Preheat by 

Natural Gas Firing
~100% Advanced O2
Membrane (Ion Transport)

Wet
FGD

4
Supercritical Steam Advanced O2 Sorbent (TDA) w/ 

Preheat in Boiler
95%+ Advanced O2 Sorbent (TDA) Wet

FGD

5
Supercritical Steam Advanced O2 Sorbent (TDA) w Preheat 

by Natural Gas Firing
95%+Advanced O2 Sorbent (TDA) Wet

FGD

6
Supercritical Steam CO2 Purification by Catalytic De-

oxidation with Natural Gas
Two cases chosen from Case 1 
through Case 5 (e.g., one TDA & one 
Ion Transport)

Wet
FGD

7
Supercritical Steam CO2 Purification by Chemical Looping Two cases chosen from Case 1 

through Case 5 (e.g., one TDA & one 
Ion Transport)

Wet
FGD

8
Supercritical Steam Advanced CO2 &

ASU Compression
Two cases chosen from above (one 
TDA & one Ion Transport)

Wet
FGD

9
Ultra-supercritical Steam
4000/1350/1400

Ultra-supercritical Steam
Cycle with Advanced Materials

Same as Case 8 except steam cycle 
(one TDA & one Ion Transport)

Wet
FGD

10 Ultra-supercritical Steam Co-sequestration Same as Case 9 without CO2
Purification (TDA & Ion Transport)

Co-capture 
with CO2

11 Supercritical CO2
Conditions: TBD

Supercritical CO2 Cycle with Advanced 
Materials

Same as Case 8 except working fluid 
(one TDA & one Ion Transport)

Wet
FGD
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CO2 Purification Need in POxC

• The oxygen content in the CO2 product has to be reduced to less than 
1,000 ppmv prior to CO2 compression

• Heat integration/optimization is critical
• 10-15% of plant’s energy output
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~21% vol.

2-4%   
vol. O2

Source: Cost of Electricity for Low Pressure 
Oxy-Combustion Technologies (NETL 2012).
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CO2 Purity Specifications

• Stringent requirements for O2 (and other contaminants) in compressed CO2

• <0.001% vol. O2
8
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CO2 Purification via Catalytic Oxidation

• Catalytic oxidation is mature technology
• Challenges with catalytic oxidation

• To meet the O2 concentration requirements, natural gas has to be used 
in greater quantities than required by the reaction stoichiometry 

• Excess natural gas ending in the CO2 will reduce system efficiency 
• Limit on CH4 is high (1% vol.) but tighter on heavier HCs
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TDA’s CO2 Purification System

• TDA proposes a chemical absorbent-based oxygen removal system
• Low O2 concentration in the treated CO2 can be readily achieved
• Excess natural gas can be recycled back to the boiler

• Does not use precious metal catalysts; low cost metal oxide catalyst could 
polish off impurities
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• TDA sorbent consists of a high 
surface area (>100 m2/g) mixed 
metal oxide AxByOz phase that 
selectively reacts with the oxygen 
in the compressed CO2 at moderate 
temperatures (<200 to 500°C)

2M + O2(g) = 2MO
4MO + CH4(g) = 4M + CO2(g) + 2H2O(g)

• Sorbent can effectively reduce O2
content to less than 100 ppmv
• No equilibrium limitations

• TDA’s sorbent uses a unique 
structure referred to as a “geode”
• High mechanical integrity
• High chemical stability
• High surface area

TDA’s Sorbent
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TDA’s geode sorbent 
structure as seen in SEM
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Typical RedOx Cycle - TGA Tests
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N2 Flush

2.5%O2/ N2

N2 Flush

2%H2/ N2

• Fast oxidation/reduction kinetics at 500oC
• 18-20% O2 uptake capacity (kg O2 removed per kg sorbent)

Oxidation Reduction

TDA-1
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TGA Cycles at 300oC
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• Formulations were modified using promoters to improve kinetics and 
oxygen uptake at lower temperatures

• Modified samples showed high capacity (12+% wt. O2) at 300oC
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Impact of Temperature
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• TDA-3 showed better oxygen uptakes at all temperatures

Gases: 2.5%O2 /N2 & 2% H2/N2 Cycle 
Temp (°C)

% oxygen 
uptake (by 

mass)
200 6.0
250 12.5
300 17.3

 400 20.5
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O2 Uptake in the Presence of CO2
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• Some metal oxide carbonation was evident 
• Oxidation is much faster than carbonation (from CO2 reaction)

2.5% O2/CO2

2.5% O2/N2

CO2
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Fixed Bed Reactor Tests
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Test Capabilities
• Breakthrough tests
• Life cycle tests
Variables
• Temp. 200-550°C
• Space velocity = 500-10,000 h-1

• Pressure = 1-20 bar
• Absorption: 0.1-5% O2/CO2
• Regeneration: 0.1-100% H2 or CH4
• An electro-chemical O2 analyzer 

(ZR800 Zirconia Oxygen Analyzer) 
with 1 ppmv O2 detection capability 
was used to measure the O2
concentration 

• California Analytical NDIR analyzer 
for CO2, CO, CH4 measurements 
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Breakthrough Tests

• Breakthrough tests confirmed very high oxygen removal efficiency 
• O2 concentration in treated gas can be lowered to <10 ppmv
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GHSV = 2,500 h-1

Feed gas: 2.5% vol. O2
(25,000 ppmv)

Leakage 
below 

detection 
limit 

Leakage 
less than 
10 ppmv
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Multiple Cycle Tests
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Cycle # 191 – 198: 400°C

220°C
300°C

400°C

• Stable performance was observed 
over 300 cycles; both isothermal 
and TSA cycles in 200-500oC range
• At 400oC ~7.4%wt. O2 capacity at 

100 ppmv breakthrough
• 15.77% wt. O2 capacity at 95% O2

uptake

Temp (˚C)
100 ppm BT 

(0.4% O2 

uptake)

Saturation BT 
(95% O2 

uptake)
400 7.42% 15.77%
300 5.75% 9.18%
200 3.50% 4.59%
100 0.09% 0.54%
50 0.03% 0.06%
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Using Methane as Reduction Gas
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• When CH4 is used instead of hydrogen the oxygen uptake decreased due 
to incomplete regenerations (lower reduction rates with CH4)
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Reaction Products - 400ºC CH4 Reduction

• Longer regenerations are needed for full reduction 
• CH4 reduction primarily generated CO2 (<50 ppm CO was observed)

20

Absorption = 2.5% vol. O2, GHSV= 2,500 h-1



CO2 Purification Process Design

Location of 
TDA Process

21

Other 
options



System Integration
• Both absorption and regeneration processes are exothermic
• Absorption

4M + 2O2 4MO ΔHrxn = -140-150 kcal/mole
• Regeneration

4MO + CH4  CO2 + 2H2O + 4M ΔHrxn = -40-50 kcal/mole

• Various heat removal options have been investigated

Adiabatic Design Isothermal Design
22



Isothermal Design
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• Reactors operating in series provides good flow match between the 
oxidation and reduction steps
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Isothermal Reactors
 Two reactors operate in series to remove O2 from the flue gas

 The first reactor receives flue gas from the compressor and the sorbent 
adsorbs the oxygen in the flue gas

 The second reactor receives the clean flue gas spiked with methane to 
regenerate the sorbent

 Isothermal reactors are packed tube, steam is raised using the heat 
generated by reaction exotherm

 Both reactors are equipped with feed-product heat exchangers to 
heat the incoming flue gas to the reaction temperature



Cycle Sequence Optimization
• In a multi-step cycle sequence, a purge 

step is added to purge any CH4 from the 
bed

• At the end of the reduction step, the 
void spaces in the bed will be filled with 
CH4 (2% vol. max) mixed with CO2
which could be transferred into the CO2
stream 

• Using a small amount of the oxygen-
free CO2 and purge the bed into the flue 
gas recycle

• Any residual CH4 will be combusted in 
the boiler

Stage 1 Stage 2 Stage 3
Time (min) 2 2 2
Bed 1 Abs Regen Purge
Bed 2 Purge Abs Regen
Bed 3 Regen Purge Abs

25



CatOx vs. Sorbent-Based O2 Removal
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Catalytic Reactor
Reactor Type – Single Fixed Bed
Feed-Product Exchangers
 Reactor – 44 MWth
Operating Temperatures
 Catalyst Bed – 520°C
 Outlet Flue Gas – 165°C
Heat Recovery – 31 MWth from waste 
heat recovery boiler 
 Steam Generated – 48,400 kg/hr @ 

45 bar (medium pressure)

Reactor Type – 2 x Packed Tube
Feed-Product Exchangers
 Adsorber – 63 MWth /Regen – 61 

MWth
Operating Temperatures
 Absorber Bed – 425°C
 Regeneration Bed – 425°C
 Outlet Flue Gas – 126°C
Heat Recovery – 39 MWth from the 
shell side of the reactors
 Steam Generated – 59,640 kg/hr @ 

45 bar (medium pressure)

Isothermal Sorbent Reactor



Plant Performance Summary
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