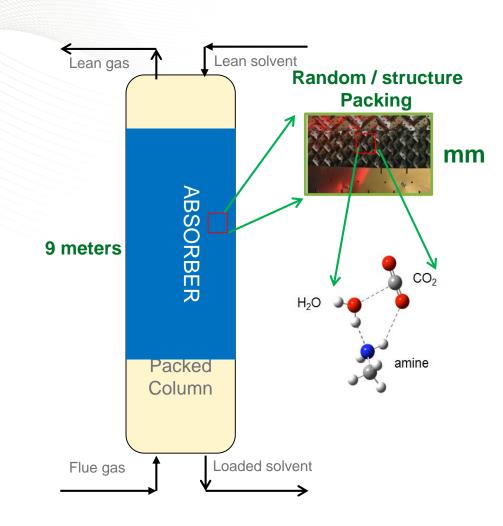
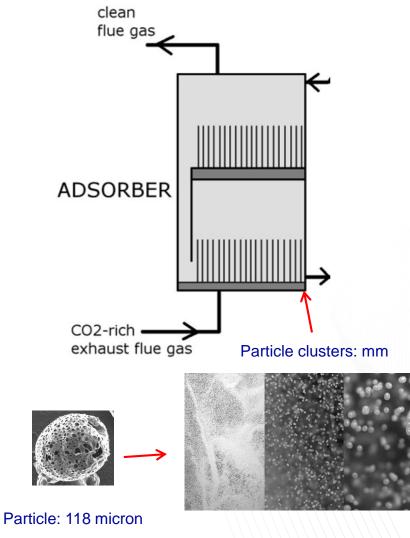
Additively Manufactured Intensified Device for Enhanced Carbon Capture

Xin Sun, Lonnie Love, James Parks II Energy and Transportation Science Division

Oct. 19, 2017


ORNL is managed by UT-Battelle for the US Department of Energy


Project Kickoff Meeting

- a. Project background
- b. Project team/project organization
- c. Project objectives
- d. Technical approach/project scope
- e. Project budget
- f. Project schedule and associated milestones
- g. Project risks/risk management

Carbon Capture: Solvent and Sorbent-based Technologies

Solvent-based capture

Sorbent-based capture

Oak Ridge National Laboratory Organizational Update

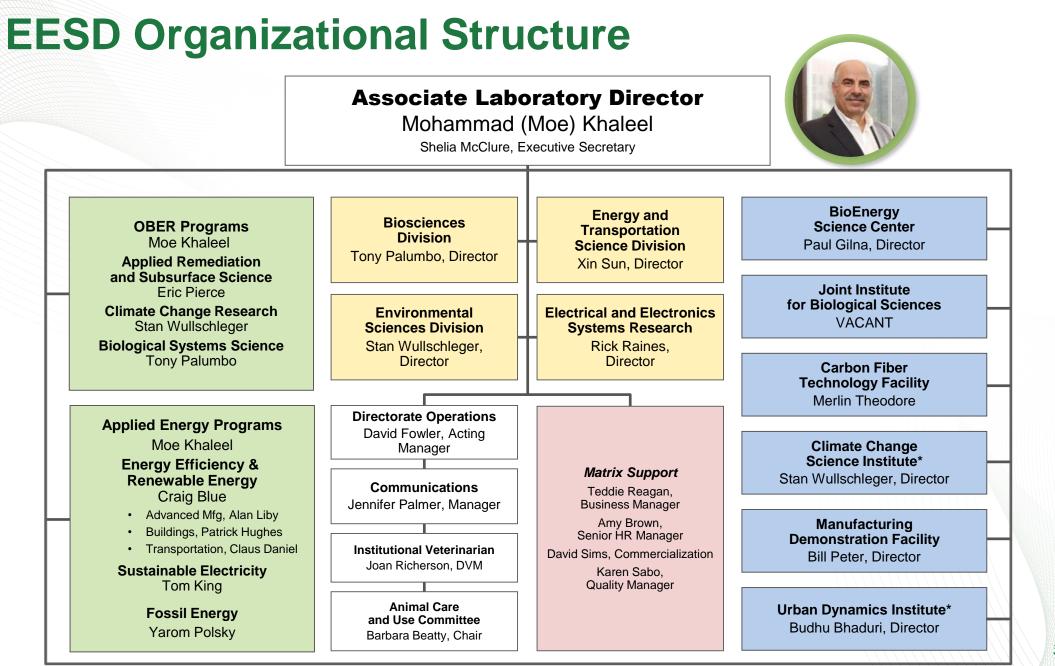
Communications: David Keim Counterintelligence: Selin Warnell Chief Information Officer: Mike Bartell Institutional Planning: Celia Merzbacher Integrated Performance Management: Mike Baker

Brad Nelson, Director

Graeme Murdoch, Director

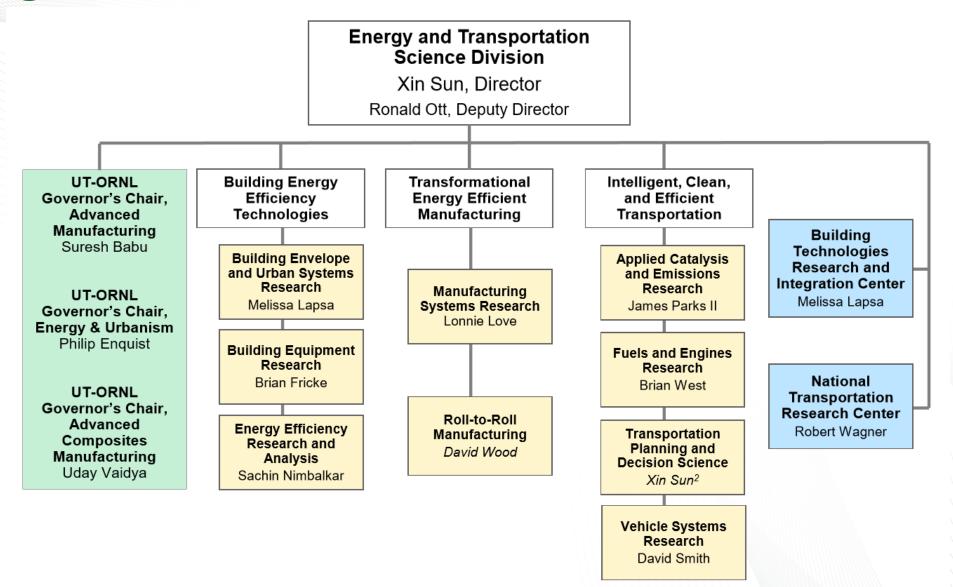
Oak Ridge National Laboratory Thomas Zacharia, Laboratory Director

Jeff Smith


Deputy

for Operations

Michelle Buchanan Deputy for Science and Technology Internal Audit: Gail Lewis General Counsel: Rachel Blumenfeld Operational Initiatives and Project Management: Jeff Ault Research Excellence: Moody Altamimi


Computational Sciences and Engineering Shaun Gleason, Director	Computer Science and Mathematics Barney Maccabe, Director	National Center for Computational Sciences James Hack, Director	Oak Ridge Leadership Computing Facility Project Buddy Bland, Project Director		Directorate Scott Branham Chief Financia
Energy and Environmenta	al Sciences Directorate: Moe	A. Khaleel, Associate Labora	tory Director		Officer
Biosciences Tony Palumbo, Director	Electrical and Electronics Systems Research Rick Raines, Director	Energy and Transportation Sciences Xin Sun, Director	Environmental Sciences Stan Wullschleger, Director		Environment Safety, and Health Directorate
Nuclear Science and Engi	neering Directorate: Alan Ice	enhour, Associate Laboratory	Director		John Powell, Director
Fusion and Materials for Nuclear Systems Phil Ferguson, Director	Nonreactor Nuclear Facilities Mike Pierce, Director	Nuclear Security and Isotope Technology Cecil Parks, Director	Reactor and Nuclear Systems Ken Tobin, Director		Facilities and Operations
Neutron Sciences Directo	rate: Paul Langan, Associate	Laboratory Director			Directorate
Neutron Scattering Richard Ibberson, Acting Director	Neutron Technologies Don Abercrombie, Acting Director	Research Accelerator Kevin Jones, Director	Research Reactors Tim Powers, Director	Proton Power Upgrade Project John Galambos, Project Director	Jimmy Stone Director
Physical Sciences Directo	orate: Phil Britt, Acting Associa	ate Laboratory Director			Human Resources
Center for Nanophase Materials Sciences Hans Christen, Director	Chemical Sciences Andrew Stack, Acting Director	Materials Science and Technology Jeremy Busby, Director	Physics David Dean, Director		Directorate Debbie Stairs Director
Global Security Directorat	te: Brent Park, Associate Labo	pratory Director (James Peery	, Chief Scientist)		
Defense and Homeland Security Programs Nick Prins, Director	DOE-IN Programs Kendall Card, Director	Intelligence Programs J.D. Stauffer, Director	Nonproliferation Safeguards and Security Programs Larry Satkowiak, Director		Partnerships Directorate Jim Roberto, Director
Exascale Computing Proj	ect: Doug Kothe, Project Direc	ctor (Stephen Lee, Deputy Pro	oject Director, LANL)		
Application Development Doug Kothe, Director	Hardware Technology Jim Ang, Director (SNL)	Software Technology Rajeev Thakur, Director (ANL)			
JS ITER Project: Ned Sau	thoff, Project Director (Suzann	e Herron, Deputy Project Dire	ector)		
Non-Nuclear Systems	Nuclear Systems				

Energy and Transportation Science Division Organizational Chart

CAK RIDGE

Additively Manufactured Intensified Device for Enhanced Carbon Capture

- Objective:
 - Design, rapid prototyping, demonstration and validation of enhanced CO₂ capture with intensified devices, i.e., unified devices combining multiple thermodynamic operations into one unit.
 - Traditional equipment design: Decoupled mass transfer and heat transfer with high equipment and space cost
- Project team and organization: Six technical tasks involving three disciplines
 - Design and optimization of heat/mass exchanger
 - Additive manufacturing
 - Core and device-scale experimental validation
- Two-year effort

Technical Approach/Tasks

- Task 1.0 Project Management and Planning
- Task 2.0 Design Realization of Intensified Device
- Task 3.0 Manufacturability (3D Printability) Study
- Task 4.0 Experimental Validation of Device Core Metrics
- Task 5.0 Advanced Manufacturing of Device-scale Prototype
- Task 6.0 Device-scale Validation through Design of Experiments

Project Approach/Timeline

- Three materials:
 - Mellapak 250 (commercial), printed Mellapak equivalent, printed intensified device

- Two scales:
 - Core scale, device scale

Project Timeline and Budget

Timeline in Quarters	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
Task 1 Project Management (\$20K)								
Task 2 Design Realization of Intensified Device geometries (\$150K)								
Task 3.1 Manufacturability of MellaPak 250-equivalent (\$70K)								
Task 3.2 Manufacturability of Intensified Device Design (\$70K)								
Task 4.0 Experimental Validation of Device Core Metrics: Commercial MellaPak 250 (\$50K)								
Task 4.1 Experimental Validation of Device Core Metrics: Printed MellaPak 250-equivalent (\$50K)								
Task 4.2 Experimental Validation of Device Core Metrics: Printed Intensified Device (\$50K)								
Task 5.1 Printing of Device-scale Prototype of MellaPak 250- equivalent (\$150K)								
Task 5.2 Printing of Device-scale Prototype of Intensified Device Design (\$150K)								
Task 6.1 Prototypical Device-scale Validation with Printed MellaPak 250-equivalent (\$120K)								
Task 6.2 Prototypical Device-scale Validation with Printed Intensified Device Design (\$120K)								

Milestone Log

er	iject ID ear	Description	Planned Completion Date	Actual Completion Date	Verification Method
	1 a	Updated Project Management Plan and Data Management Plan	09/30/2017		Project Management Plan file
	1 b	Kickoff Meeting	10/19/2017		Presentation file
	1 c	Baseline geometry (MellaPak 250) printed	3/31/2018		Quarterly Progress Report and corresponding data delivery
	1 d	Intensified device design printed	6/30/2018		Quarterly Progress Report
	1 e	Core metrics for commercial MellaPak 250 and for printed MellaPak 250 equivalent completed	9/30/2018		Quarterly Progress Report
	2 f	Core metrics for printed intensified device design completed	12/31/2018		Quarterly Progress Report
	2 g	Device-scale prototype of MellaPak 250 equivalent printed and delivered for testing and validation	9/30/2018		Quarterly Progress Report
	2 h	Device-scale prototype of intensified device design printed and delivered for testing and validation	3/31/2019		Quarterly Progress Report
	2 i	Device-scale validation experiments with printed MellaPak 250 equivalent completed	3/31/2019		Quarterly Progress Report
	2 j	Device-scale validation experiments with printed intensified device design completed	9/30/2019		Quarterly Progress Report

Funding and Success Criteria

				Planned Costs	
	Planned Costs Fiscal Year	Fiscal Year (year in which the cost will be incurred, not appropriated)	Performing Organization	Federal Share	
//	1	FY2018	ORNL	\$500,000	
	2	FY2019	ORNL	\$500,000	
	total	FY18-FY19	ORNL	\$1,000,000	

Fiscal Year	Date	Success Criteria
Project Year 1	Sept. 30, 2018	Successfully printed MellaPak 250-equivalent and intensified device design at 2'X2'X2' scale, ready for core metrics testing.
Project Year 2	Sept. 30, 2019	Successfully demonstrated the heat and mass transfer efficiency of the printed intensified design vs. printed MellaPak 250 at the device scale.

Risks and Risk Mitigation

14

Description of Risk	Probabili ty	Impact	Risk Management Mitigation and Response Strategies		
Technical Risks:		:			
Subtask 3.1 Baseline Geometry- MellaPak 250-equivalent - Since commercial Mellapak baseline is made from stacks of thin metal sheets with intricate geometric features, additively manufactured baseline from subtask 3.1 may deviate slightly from the intricate geometric features. In addition, the additively manufactured part will also have surface undulations intrinsic to the metal deposition process. These deviations from the commercial baseline, however, may or may not influence the overall capture performance of the packing.		Low	As a risk mitigation, ORNL will first document the quantitative differences of the printed and the commercial MellaPak in terms of surface measurements. Then pressure drop and wettability will be measured in Task 4 for both the commercial packing and the printed packing. Decisions will then be made on whether further improvements on printing techniques and parameters will be necessary to reduce the geometric discrepancies between the printed and the commercial baseline of MellaPak 250.		
Task 5.0 Advanced Manufacturing of Device-scale Prototype - The size of the prototype device-scale may be too large such that the printed structure might not withhold its own weight as the device height increases. Resource Risks:			As a mitigation, mechanical strength characterization for the intensified design will be carried out in Subtask 3.2 and a bound analysis will be performed to limit the device build height.		
Y2 Task 6 on Device scale validation - This is the last task of the project mostly scheduled for Year 2. If the device scale validation needs more funding than anticipated due to its complex nature, the project would not be able to accommodate this resource shortage at the end of the project.	Medium		Reducing the size of the device-scale validation may be considered as a mitigation technique.		
Management Risks:					
Timely coordination of the three Medium High The execution of the project requires seamless integration of three different disciplines/capabilities residing within two divisions at ORNL. Any problems/delays in a particular task will cascade down to impact the delivery of the subsequent task. The PI is experienced in leading a multi-disciplinary team as such. Interdisciplinary communication is key to the success of this project. The staff within ETSD are collocated at NTRC. Daily technical progress exchange will be encouraged. Project specific shared drive will be used to update technical progress. A bi-weekly face to face project meeting will be used to further improve technical communications, identify issues early and to mitigate risks with team consensus.					

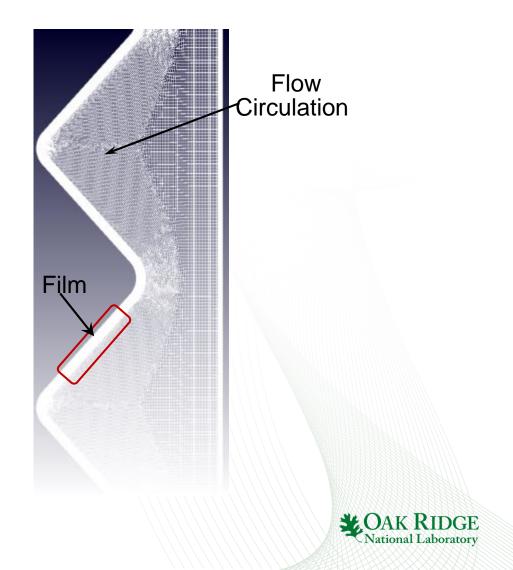
Started Discussions with CCSI2 Team on Core Design Optimization

- Device scale:
 - MFix simulation to derive optimized column temperature profile for capture efficiency (cm scale)
- Corrugation scale:
 - VOF-based coupled mass and heat transfer with heat sinks within the corrugation

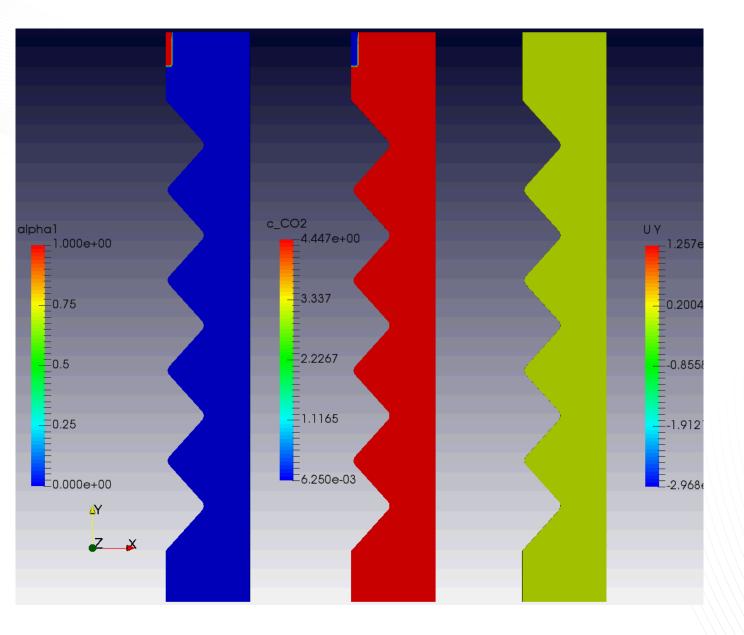
Absorption in Structured Packings

Problem setup

Parameter	
Corrugation base (B)	26.7 mm
Corrugation height (h)	12.0 mm
Corrugation side (s)	17.0 mm


-sheet

inL


outG

inG

out

Animation for Solvent Absorptions

Significant Awards and Achievements: Manufacturing

Federal Laboratory Commission Regional Partnership Award: Sandia and TPI Composites on Blade Manufacturing using Advanced Manufacturing CAMX Ace Award Finalist: Bio-Composite Printing

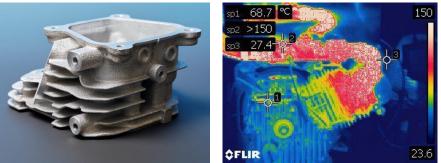
Development of Metal BAAM for Printed Excavator at CONEXPO: Mark Noakes, Brad Richardson, Andrzej Nycz, Brian Post, Matthew Sallas , Srdjan Simunovic, Ralph Dinwiddie

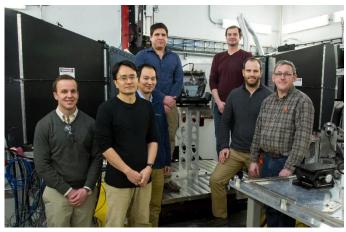
Navy's Admiral Award: 3D Printed Submarine

-- Lonnie Love

Guinness Book World Record for Largest 3D printed part: Partners Cincinnati Inc, Boeing, Techmer, Ford

-- Brian Post

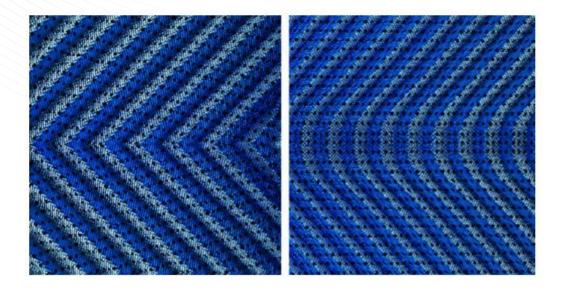

Design Miami 3D printed bamboo pavilion: Partner ShoP and Techmer

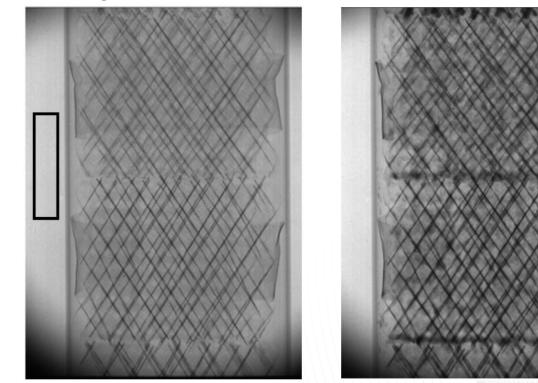

-- Lonnie Love

CAK RIDGE National Laboratory

First-of-a-kind experiment uses neutrons to evaluate new alloy during engine operation

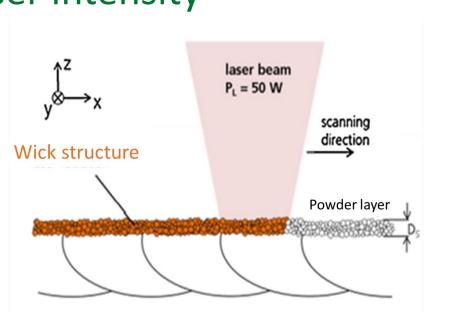
- The cylinder head for a small engine was cast with a new ORNL alloy and characterized with neutrons on a running engine to investigate alloy performance
 - Multi-disciplinary research team included experts in neutrons, materials, and combustion science
 - Experiment conducted on the SNS Vulcan beamline
 - Neutrons used to measure stress and strain on the alloy during engine operation
- Experiment demonstrated that the new alloy outperforms other aluminum alloys at high temperatures
- Successful proof of principle for in-situ neutron analysis of engine components during actual operating conditions

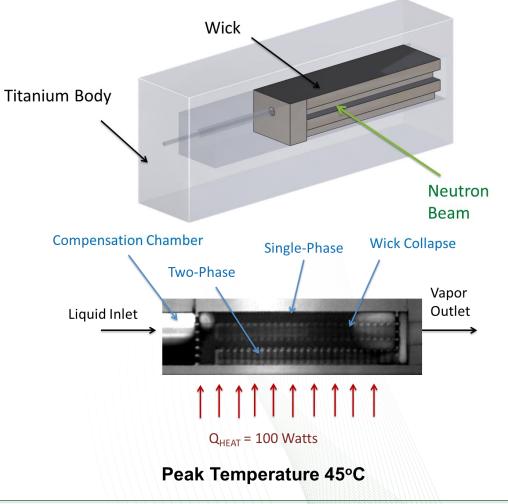




Possibility of Using Neutron Radiography on Wetting Comparison

Commercial vs printed core on wetting




M. Basden, et al. Liquid Holdup Profiles in Structured Packing Determined via Neutron Radiography, dx.doi.org/10.1021/ie402574x| Ind. Eng. Chem. Res. 2013, 52, 17263–17269.

Creating 3D Printed Heat Pipe Porous Wick Structures by lowering EBM/laser intensity

- Heat Pipes offer heat transfer rates orders of magnitude greater than conduction
- AM primarily uses low thermal conductivity materials
- Embed heat pipes into 3D printed parts
- Neutron image to optimize design

4000

tar