Laser 3D Printing of SOFCs

Project ID: FE069-p

Jian Liu, Ph.D.

Principal Investigator
Taylor Cheng and Shuang Bai
PolarOnyx, Inc.
2526 Qume Drive, Suites 17
San Jose, CA 95131

Tel: 408 573 0930

Email:jianliu@polaronyx.com

DOE 2018 Annual Review Meeting: June 13, 2018

Laser 3D Printing of SOFCs

DoE SBIR Phase II DE-SC0015199 (04/10/2017 - 04/09/2019)

14b. Additive Manufacturing for Solid Oxide Fuel Cell (SOFC) Components

Timeline and Budget

Direct 3D Femtosecond Laser Manufacturing of SOFC

Project Start Date: 04/10/2017

Project End Date: 04/09/2019

Total Project Budget: \$999K

Total DOE Funds Spent*: \$426K
 as of 3/31/2018

Barriers

- Limited R&D on 3D printing of SOFC
- Challenge in multi-material AM
- Challenge in thickness control and interface quality

Partners

- Funded by DOE NETL
- Engaging with public companies for collaboration and potential investment, M&A.

SOFC AM Phase II Objectives

Component	Material	Thickness	Porosity
Anode	Ni/YSZ	0.3-0.6 mm	~ 40%
Electrolyte	YSZ	5-10 μm	< 5%
Cathode	Conducting ceramic	10-50 μm	~ 30%

Key Objectives in Phase II:

- Multi-layer and multi-material additive manufacturing
- Subtractive manufacturing
- SOFC fabrication and test

fs Fiber Laser Based AM Setup

Electrical control schematic

Innovating 3D Manufacturing

6/13/2018

Phase II Major Milestones

Item	Delivery Month	Major milestones
1	3	Experiment setup of AM for Ni-YSZ anode
2	6	Experiment results & optimization of Ni-YSZ anode
3	9	Optimization of AM for YSZ-electrolyte
4	12	Optimization of Multi-layer anode and electrolyte
5	12	Make small fuel cell. Continuation application
6	15	Experiment results of SOFC fabrication, packaging, and thermal management. SM process optimization. Make small cells and do optimization
7	18	SOFC testing results and design scaling and optimization
8	21	Optimization of SOFC AM system and stabilizing the process
9	24	Prototype and marketing report
10	24	Publications
11	24	Final patent report on Phase II project
12	24	Wrap up all the deliverables

Multi-layer YSZ AM Process

Innovating 3D Manufacturing

Multi-layer Ni-YSZ AM and Optimization

Innovating 3D Manufacturing

6/13/2018

Optimized Ni-YSZ AM Process

1st Layer
Power: 230w
Power: 230w
Type: Line
Speed: 400mm/s
Tile Size: 2
Spacing: 0.03
Speed: 70mm/s
Overlap: 0.5
AOM: 4

Uniform and smooth surface is made with good repeatability.

Ni-YSZ AM is very sensitive to process parameters (power, speed, hatch, scan pattern, powder, substrate, etc.). Only small process window works.

Ni-YSZ Anode Substrate

Ni-YSZ Anode Substrate

Substrate made

Selected for next step

YSZ on Ni-YSZ

Scan pattern 1

Scan pattern 2

10x10 mm SOFC Samples

Succeeded in making a few complete cells with controlled thickness.

- Ni-YSZ Layer Thickness (After Remove Bottom Powder): ~ 280 μm
- YSZ Layer Thickness: 10μm 25μm
- LSM Layer Thickness: 10μm -40μm

10 μ m thick YSZ (electrolyte) can be processed on Ni-YSZ (Anode)

- Chess pattern works the best to mitigate residual stress induced by thermal gradience
- 12x12 mm area is achieved

SOFC for Testing

Sample 1

Anode

Cathode

Sample 2

Anode

Cathode

Subtractive Manufacturing (SM) is used to drill holes to enhance performance.

SOFC Test Results

It is working and improvement is needed.

Innovating 3D Manufacturing

5/31/2018

Next Steps

- Optimize process to get uniform thickness and interface control
- Optimize subtractive manufacturing (SM) to control porosity.
- Strengthen the Ni-YSZ anode substrate
- Scale the dimension

Priority: Performance improvement

Summary-Phase II Accomplishments

- Designed, developed, and assembled an AM system with fs fiber laser
- Developed YSZ AM with high repeatability and multilayer process
- Developed Ni-YSZ as anode layer with 12x12 mm area and high repeatability and uniformity
- Developed triple-layer AM of YSZ (electrolyte), Ni-YSZ (Anode) and LSM (Cathode) with 10x10 mm area. World's first demonstration of a working SOFC using fs Laser AM.
- Modeled the AM process on thermal stress
- One publication

Thank You Very Much!

The future is in our hand!

