Chromium Vapor Sensor for Monitoring Solid Oxide Fuel Cell Systems

Jeffrey W. Fergus
Auburn University
Materials Research & Education Center

UNIVERSITY

2018 U.S. DOE Hydrogen and Fuel Cells
Program Annual Merit Review Meeting
June 13-15, 2018
Washington D.C.

SAMUEL GINN COLLEGE OF ENGINEERING

Acknowledgments

- Funding
 - DOE NETL Solid Oxide Fuel Cell Core Technology and Innovative Concepts, DE-FE0028183
- Students
 - Graduate student: Moaiz Shahzad
 - Undergraduate student: Tommy Britt

Background

- Source of Chromium
 - Chromia formers used for interconnect due to high electronic conductivity of Cr₂O₃ relative to Al₂O₃ and SiO₂
 - Oxidation of chromia scale (interconnect or balance of plant) to CrO₃ or CrO₂(OH)₂
- Chromium Deposition
 - Cr⁶⁺ reduced to Cr³⁺ (i.e. Cr₂O₃) on cathode

Cr-O-H Vapor Pressures

Vapor pressures higher in oxidizing conditions

Cr-O-H Vapor Pressures

10 ppm does not cause degradation

J.S.Hardy *et al.*, "Button Cell Tests with LSM/YSZ Cathodes with Quantified Cr Concentrations," 17th Annual Solid Oxide Fuel Cell Project Review Meeting, June 12-14, 2017, Pittsburgh PA, https://www.netl.doe.gov/events/conference-proceedings/2017/sofc

Stability of CrO₃ / CrO₂(OH)₂

CrO₂(OH)₂ predominant even in relatively dry conditions

Vapor Pressure of CrO₃ / CrO₂(OH)₂

Vapor pressure of $CrO_2(OH)_2$ high at relatively low temperatures

Reduce Chromium Poisoning

- Source
 - Non-chromia forming alloys
 - Alumina, silica high electrical resistance
 - NiO fast growth rate
 - Alloying additions
 - Mn to form outer spinel layer reduces chromia activity and thus vapor pressure
 - Coatings
- Cell
 - Cr poisoning resistant electrodes
- System
 - Cr getter

Chromium Getter

C. Liang *et al.*, "Mitigation of Cathode Poisoning Using Chromium Getters," 17th Annual Solid Oxide Fuel Cell Project Review Meeting July 19-21, 2016, Pittsburgh PA, https://www.netl.doe.gov/events/conference-proceedings/2016/2016sofc

Chromium Getter

J. Stevenson and B. Koeppel, SOFC Development at PNNL: Overview," 17th Annual Solid Oxide Fuel Cell Project Review Meeting July 19-21, 2016, Pittsburgh PA, https://www.netl.doe.gov/events/conference-proceedings/2016/2016sofc

Chemical Sensor SOFC BOP / Stack

- Potentiometric Chemical Sensors
 - Solid electrolyte based
 - Thermodynamic not kinetic
 - Stable
 - Not microstructure dependent
 - Used in ICE exhaust gas sensors, molten steel oxygen probes
- Auxiliary Electrode
 - Relate activity of target (Cr) to that of the mobile species (O²- or Na⁺)
 - Cr / O^{2-} : $2Cr + 3O^{2-} = Cr_2O_3 + 6e^{-}$
 - Cr / Na⁺: 5Cr + 3Na₂CrO₄ = 6Na⁺ + 4Cr₂O₃ + 6e⁻

Potentiometric Chemical Sensors

$$E = \frac{RT}{4F} \ln \left(\frac{po_2^S}{po_2^R} \right) = \frac{RT}{4F} \ln \left(\frac{1}{po_2^R} \right) + pO_2^S$$

$$20^{2-} = O_2^R + 4e^{-}$$

Gas reference (e.g. Exhaust Gas Sensor)

$$2Cr + 3O^{2-} = Cr_2O_3 + 6e^{-}$$

Metal + oxide reference (e.g. Molten Steel Oxygen Probe)

$$2Cr + 3/2O_2 = Cr_2O_3$$

$$K = \frac{a_{Cr_2O_3}}{a_{Cr}^2 \cdot p_{O_2}^{3/2}} \to p_{O_2}^{3/2} = \left(\frac{a_{Cr_2O_3}}{a_{Cr}^2 \cdot K}\right)^{2/3}$$

Auxiliary Electrode

$$2Cr + 3O^{2-} = Cr_2O_3 + 6e^{-}$$

Auxiliary Electrode

$$2Cr + 3O^{2-} = Cr_2O_3 + 6e^{-}$$

$$E = \frac{RT}{4F} \ln \left(\frac{pO_2^S}{pO_2^R} \right) = \frac{RT}{4F} \ln \left(\frac{\frac{a_{Cr_2O_3}}{\overline{a_{Cr_2O_3}^2} \cdot K}}{\frac{a_{Cr_2O_3}}{\overline{a_{Cr_2O_3}^2} \cdot K}} \right) = \frac{RT}{4F} \ln \left(\frac{a_{Cr}^2)_{ref}}{\overline{a_{Cr}^2)_{alloy}}} \right)$$

For Cr + Cr₂O₃ reference
$$E = -\frac{RT}{2F}\ln(a_{Cr})$$

YSZ Auxiliary Electrode Reaction

$$2YCrO_3 + 2H_2O + O^{2-} = 2CrO_2(OH)_2 + Y_2O_3 + 2e^{-}$$

Zr-Y-Cr-O Phase Equilibria

Sensor Schematics

COLLEGE OF ENGINEERING

Sensor Miniaturization

- Thin film fabrication
- Measure of local Cr vapor concentrations

Sensor Testing

Sensor Response

Low Temperature Response

Response Time

Sensor Response

Beta Alumina Auxiliary Electrode Reaction

$$2Na_2CrO_4 + 2H_2O = 4Na^+ + 2CrO_2(OH)_2 + O_2 + 2e^-$$

Gas

Electrode

Electrolyte

Synthesis of Na₂CrO₄

- $Cr_2O_3 + Na_2CO_3$
- Vapor phase deposit

Summary

- Mitigation of chromium poisoning
 - Alloy design
 - Ceramic coatings
 - Chromium getter
- Chromium sensor for health monitoring
 - Solid electrolyte based
 - YSZ or β alumina

Thank you for your attention

