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Introduction
• Background

– Chromium (Cr) poisoning of cathode in solid oxide fuel cells (SOFCs) is considered to be one of the major 
reasons for performance degradation

– For different cathode materials, the mechanisms of Cr-poisoning are complex.

• Project Goals
– Compare the degradation phenomena in LSM, LSF, and LNO (La2NiO4) - based cathodes caused by Cr-

poisoning

– Through the comparative study, investigate the mechanisms of Cr-poisoning in these three types of 
cathodes in realistic full cell operating conditions

– Design mitigating strategies based on applying protective coatings to ferritic stainless steel interconnects
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Cell Fabrication

LSM: (La0.8Sr0.2)0.95MnO3-x
LSF: (La0.8Sr0.2)0.95FeO3-x
GDC: (Gd0.10Ce0.90)O2-x
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Summary of Test Conditions

Conditions Cathode 
Atmosphere

Current 
Condition Cells

1 Dry Air Open Circuit
LSM-1

LSF-1

2 Humidified Air 
(10% H2O) Open Circuit

LSM-2

LSF-2

3 Dry Air Galvanostatic
(0.5 A/cm2)

LSM-3

LSF-3

4 Humidified Air 
(10% H2O)

Galvanostatic
(0.5 A/cm2)

LSM-4

LSF-4

• General test conditions:
– Fuel: 98% H2+2% H2O (300 cc/min): Fixed
– Oxidant: Air (1000 cc/min)
– Interconnect: Crofer 22 H mesh (used as 

cathodic current collector in cell tests)

• Conditions varied in the study:
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Electrochemical Degradation: V-i
Condition 1: 

Dried Air + OCV
Condition 2: 

10% Humidified Air + OCV
Condition 3: 

Dried Air + 0.5 A/cm2
Condition 4: 

10% Humidified Air + 0.5 A/cm2
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Electrochemical Degradation: V-i
LSM-based cell performance vs. Time LSF-based cell performance vs. Time

 Cr-poisoning is more deleterious in LSM-based cell than that in LSF-based cell.
 In the case of LSM-based cell:

– Current load (0.5 A/cm2) accelerates the degradation
– Presence of humidity in air promotes degradation under current load

 In the case of LSF-based cell:
– Current load (0.5 A/cm2) slightly improved the cell performance (presumably due to cell break-in)
– In humidified air, performance deteriorated under OCV condition but improved under current load
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+ OCV

2.7% 2.4%

-29.0%

-92.5%

0.7%

-9.5%

5.7%
9.6%

-100.0%

-90.0%

-80.0%

-70.0%

-60.0%

-50.0%

-40.0%

-30.0%

-20.0%

-10.0%

0.0%

10.0%

Pe
rfo

rm
an

ce
 C

ha
ng

e

Performance Change in 120 h in Different Conditions

LSM-Based
LSF-Based



8

Electrochemical Degradation: EIS
Conditions LSM-Based LSF-Based

Condition 1: 
Dried Air 

+ OCV

Condition 2: 
Humidified Air 

+ OCV

Condition 3: 
Dried Air 

+ 0.5 A/cm2

Condition 4: 
Humidified Air 

+ 0.5 A/cm2
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Electrochemical Degradation: EIS
LSM-based cell structure LSF-based cell structure

Air + 10% H2O

Dried Air
Dried Air

Air + 10% H2O

 EIS consistent with the V-i results. In 10% humidified air, it shows increasing polarization of LSM-based 

cell and decreasing polarization of LSF-based cell.
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Microstructural Evolution: LSM-Based
LSM-1: Dry Air + OCV LSM-3: Dry Air + Current

LSM-4: Humidified Air + CurrentLSM-2: Humidified Air + OCV
Cr-containing deposits are Cr,Mn-rich, 
suggesting (Cr,Mn)3O4 spinel phases
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Microstructural Evolution: LSM-Based

 Cr intensity at cathode/electrolyte interface: LSM-4 > LSM-3 > LSM-2 ≈ LSM-1 
 Cr deposition was promoted by current and extended to TPB’s away from the cathode/electrolyte interface.

Criterion for quantifying Cr 
distribution in LSM

Cross section of LSM-based 
cathode

Cr-enrichment profile in the 
LSM-based cathode 

* Wang, R., Pal, U. B., Gopalan, S., & Basu, S. N. (2017). Journal of The Electrochemical Society, 164(7), F740-F747.
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Microstructural Evolution: LSF-Based
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Microstructural Evolution: LSF-Based
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Microstructural Evolution: LSF-Based
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Microstructural Evolution: LSF-Based
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Degradation in LNO Cathodes
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Degradation Mechanisms
 Effect of humidity on Cr evaporation:

Equilibrium Partial Pressure of Cr vapor 
species over Cr2O3 scale

Equilibrium Partial Pressure of Cr 
in 10% Humidified Air

Equilibrium Partial Pressure of Cr 
in Dry Air

 Cr vapor pressure in 10% humidified air is ~2-order-of-magnitude higher than that in dry air*.

* Wang, R., Würth, M., Pal, U. B., Gopalan, S., & Basu, S. N. (2017). Journal of Power Sources, 360, 87-97.
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Degradation Mechanisms
 Effect of humidity on Cr distributions: 2SrCr2O4(s) + 2H2O(g) + 3O2(g)=2SrCrO4(s) + 2CrO2(OH)2(g) ----- (1)

or SrCr2O4(s) + 4H2O(g) + 2O2(g)=Sr(OH)4(s) + 2CrO2(OH)2(g)    ----- (2)

Evaporation of Cr-deposits on the LSF surface:
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Oxide Protective Coatings



XRD: a) CuMn1.8O4 powders
b) after reduction anneal
c) after 1h oxidation anneal

EPD 

Reduction annealing
(1000 °C, 24 h)

Oxidation 
annealing

(850 °C, 1 h)

a

b

c

EPD Coating of CuMn1.8O4

Z. Sun et al, Journal of Power Sources,

378 (2018), 125-133.



Cr Diffusion and Microstructure
Evolution

750 ºC 100 h 750 ºC 950 h

<1 μm ~ 2.1 μm

850 ºC 100 h 850ºC 100h + 800ºC 400h

~ 13.5 μm~7.1 μm

Particle

Reaction layerNeedle structures



23

TEM Analaysis of Protective Coatings

Mn Cu O
Mn

Cu O

Cr

Needle structures: Mn3O4 Particles in dense layer: Cr2O3
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Reaction between Cr2O3 and CuMn1.8O4
powders (800 °C, 10 h, in air)

Solubility of Cr2O3 in CuMn1.8O4

Cr2O3

Solubility
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* Zhu et al, Mater. Sci. Eng. A 348 (2003) 227–243
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Coating on complex geometry (mesh) 
and Electrochemical tests – LSM cells

Commercial CuMn2O4

Uncoated interconnect

Bare

Commercial 
coating

BU Coating
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Summary
• LSM, LSF-GDC, and LNO-based cathodes have been tested against 

chromium poisoning under load, and in the presence of 10% 
humidity
– LSF-GDC and LNO cathodes show excellent tolerance towards chromium 

poisoning compared to LSM
– The differences in the mechanisms of degradation are still being worked out

• High quality CuMn spinels have been applied using EPD to 
complex geometries of ferritic stainless steel interconnects.
– The coatings are very effective in providing a barrier to Cr attack on LSM 

cathodes
– The combination of LSF-GDC or LNO with CuMn protective coatings should 

provide excellent long term stability against Cr poisoning
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