A Process with Decoupled Absorber Kinetics and Solvent Regeneration through Membrane Dewatering and In-Column Heat Transfer (DE-FE0031604) May 18, 2018 #### **Outline** - Background - Team/organization - Objectives - Technical Approach - Scope of Work - Project Schedule/Milestones - Budget - Decision Points and Success Criteria - Project Risks and Mitigation # **Background: Analysis Approach and Methodology** # What will Happen for Case with Theoretical Energy Consumption? #### **Two Main Root Causes** Too focused on energy savings Provide safe zone for packing ineffective -- gas/liquid channel flow Flooding Point to Determine ID -- No notable difference when L/G = 3-4 Varying height to match kinetic and physical properties # **Thought 1: Taking Advantage of Packing** Inclination Angle: $Y - 45^{\circ}$ $X - 60^{\circ}$ | Increasing Capacity | | | | | | | Increasing Efficiency | | | | | | |--|-----------------------------|----------|--------------|-----------|--------------|-----------|-----------------------|--------------|------------------------|------------|--------------|--------------| | FLEXIPAC® Structured I
Surface Area | Packing
ft²/ft³
m²/m³ | 17
55 | 25
80 | 34
110 | 47
155 | 68
225 | 77
250 | 90
295 | 106
350 | 129
420 | 152
500 | 220
725 | | Inclination Angle | 45°
60° | 4Y
4X | 3.5Y
3.5X | 3Y
3X | 2.5Y
2.5X | 2Y
2X | 250Y
250X | 1.6Y
1.6X | 1.4Y/350Y
1.4X/350X | IY
IX | 500Y
500X | 700Y
700X | # Thought 2: Can We Manage the Operational Cost? # **CAER's Research on Zeolite Membrane Module** - Started in 2010 - Funded by State of KY, ARPA-E, and DOE/NETL - Have been working on catalytic zeolite (T) and water reduction (Y) - Focus on membrane synthesis and small modular configuration Commercially used in other organic/water separations. 20 # Advanced Stripping -- Secondary Vapor Generation Point Temperature (left) and flow (right) conditions inside a stripping column. Towards the top of the column, the temperature will rise and significant energy will be expended to vaporize water (lower CO_2/H_2O ratio). q # **Unique Facility -- 30 L/min Small Bench Unit** # Coal-Derived Flue Gas-based 0.1 MWth CO₂ Capture Unit ## **Project Team** | Activity Leaders | Tasks | | | | | | | | |--|---|--|--|--|--|--|--|--| | James Landon (UKy-CAER) | • Task 1, 3, 4, 5, 6, 7, 8 – Project Management and Reporting, Zeolite Membrane, Long-Term Testing Validation | | | | | | | | | Kunlei Liu (UKy-CAER) | Task 1, 4, 5, 6 – Project Coordination, budgeting, Engineering Support | | | | | | | | | Fan Zhen (UKy-CAER) | • Task 5, 6, 9 – Stripper Modification, Process Simulation | | | | | | | | | Du Nguyen (LLNL) | Task 2, 6 – Fabrication of Smart Packing Material | | | | | | | | | Richard Ciora (MPT) | Task 3, 4, 6, 7 – Membrane Fabrication and Scale-
up | | | | | | | | | Andrew Sexton (Trimeric) | Task 9 – Techno-Eco Analysis and Cost
Methodology | | | | | | | | | Clay Whitney (SMG) • Task 10 – EH&S and Risk Assessment | | | | | | | | | ### **Project Objective** Developing transformative post-combustion CO₂ capture through: - 1. 3-D printed two-channel structured packing material to control the absorber temperature profile - 2. Zeolite membrane dewatering unit capable of >15% dewatering of the carbon-rich solvent prior to the stripper - 3. Two-phase flow heat transfer prior to the stripper providing a secondary point of vapor generation ### Tasks – Heat Transfer Packing - Heat transfer packing material will be designed and printed by LLNL - A vendor will be identified for scale-up - Testing will take place in the small and large bench units #### **Associated Tasks**: Task 2: 3-D Printed Packing Material for Absorber **Task 4**: 30 L/min CO₂ Capture Bench Unit Evaluation <u>Task 6</u>: 0.1 MWth Post-Combustion CO₂ Capture Facility Evaluation #### **Tasks – Zeolite Membrane Module** Zeolite Y membrane can stably dewater amine process streams for extended time periods without fouling The packing density will be increased through alternative zeolite supports and packing arrangement. #### **Associated Tasks:** <u>Task 3</u>: Zeolite Dewatering Module Development and Fabrication Tasks 4 & 6: Bench Unit Evaluations <u>Task 7</u>: High Packing Density and Performance Zeolite Y Membranes <u>Task 8</u>: Composite Zeolite and Alternative Dewatering Membranes ### Tasks - Stripper Modification - The existing L/R heat exchanger will be split into two sections with a dewatering membrane in between - A 2-ft section of packing will added to stripper #### **Associated Tasks:** <u>Task 6</u>: 0.1 MWth Post-Combustion CO₂ Capture Facility Evaluation <u>Task 9</u>: Techno-Economic Analysis ### Project Budget – Resource Load | Resource Loaded Schedule | | | | | | | | | | |--------------------------|---|------------|------------|-----------|--|--|--|--|--| | Task | Task Name | Start | Finish | Task Cost | | | | | | | 1 | Project Management and Planning | 5/1/2018 | 4/30/2021 | \$411,574 | | | | | | | 2 | 3-D Printed Packing Material for Absorber | 5/1/2018 | 5/1/2019 | \$322,605 | | | | | | | 3 | Zeolite Dewatering Module Development and Fabrication | 5/1/2018 | 4/30/2019 | \$584,592 | | | | | | | 4 | 30 L/min CO ₂ Capture Bench Unit Evaluation | 1/31/2019 | 10/31/2019 | \$615,320 | | | | | | | 5 | Test Plan Development | 7/1/2019 | 10/31/2019 | \$63,839 | | | | | | | 6 | Evaluation of Proposed Technique at 0.1 MWth Post-Combustion CO ₂ Capture Facility | 11/1/2019 | 4/30/2021 | \$968,190 | | | | | | | 7 | High Packing Density and Performance Zeolite Y Membranes | 10/31/2019 | 7/31/2020 | \$274,417 | | | | | | | 8 | Composite Zeolite and Alternative Dewatering Membranes | 7/31/2020 | 1/31/2021 | \$137,209 | | | | | | | 9 | Techno-Economic Analysis | 4/30/2020 | 4/30/2021 | \$189,026 | | | | | | | 10 | Topical Report Preparation and Submission | 11/2/2020 | 4/30/2021 | \$167,477 | | | | | | ### Project Schedule – Budget Period 1 #### **Budget Period 1 Summary:** - 1. Printed packing material and zeolite membrane development - 2. Construction and verification testing of 3-D heat-transfer packing material in the absorber and zeolite dewatering module prior to the stripper in UKy-CAER's 30 L/min small bench CO₂ capture unit - 3. Test Plan Development for 0.1 MWth large bench CO₂ capture unit ## Project Schedule – Budget Period 2 | Task N ame | Start | Finish | 2019 2020 2020 2017 2 2020 202 | |---|----------|---------|--| | 6 Evaluation of Proposed Technique at 0.1 MWth | 11/1/19 | 4/30/21 | | | Post-Combustion CO2 Capture Facility | | | | | 6.1 Stripper and Auxiliary Facility Modification and Retrofit | 11/1/19 | 2/2/20 | | | 6.2 Packing Design Update and Acquisition of Packing | 11/1/19 | 2/2/20 | | | 6.3 Fabrication of Zeolite Y Membrane Module | 11/1/19 | 2/2/20 | | | 6.4 Installation and Verification Studies of Advanced
Packing Material | 2/3/20 | 4/30/20 | | | 6.5 Installation and Verification Studies of Zeolite Y
Membrane Module | 1/30/20 | 4/30/20 | | | 6.6 1000-hour Long-term Operation | 5/1/20 | 4/30/21 | _ | | 7 High Packing Density and Performance Zeolite Y Membranes | 10/31/19 | 7/31/20 | | | 8 Composite Zeolite and Alternative Dewatering Membranes | 7/31/20 | 1/31/21 | <u> </u> | | 9 Techno-Economic Analysis | 4/30/20 | 4/30/21 | | | 9.1 Modeling | 4/30/20 | 3/3/21 | | | 9.2 Techno-economic Analysis | 10/1/20 | 4/30/21 | 1 | | 9.2.1 TEA complete | 4/30/21 | 4/30/21 | , | | 10 Topical Report Preparation and Submission | 11/2/20 | 4/30/21 | | | 10.1 State Point Data Table | 11/2/20 | 4/30/21 | | | 10.1.1 State Point Data Table complete | 4/30/21 | 4/30/21 | | | 10.2 Technology Gap Analysis | 11/2/20 | 4/30/21 | | | 10.2.1 TGA complete | 4/30/21 | 4/30/21 | | | 10.3 Environmental, Health, and Safety (EH&S) Assessment | 11/2/20 | 4/30/21 | | | 10.3.1 EH&S complete | 4/30/21 | 4/30/21 | | #### **Budget Period 2 Summary:** - I. Retrofit of UKy-CAER's 0.1 MWth CO₂ capture large bench unit - 2. Integration and long-term testing of packing material, zeolite module, and modified stripper operation in 0.1 MWth unit - 3. Higher performance zeolite membrane module # **Project Management Plan – Success Criteria** | Decision Point | Date | Success Criteria | |-----------------------|------------|---| | Completion of Budget | 10/31/2019 | 1. Peak Absorber Temperature Reduced by >10 °C | | Period 1 | | Confirmed | | | | 2. Zeolite Y Membranes with Fluxes >10 kg/m²/h | | | | Confirmed at Rejection Rates of >90% | | | | 3. Dewatering Zeolite Y Module Design Complete with | | | | >200 m ² /m ³ | | | | 4. Test Plan Complete for 0.1 MWth Capture Unit | | Project Completion | 4/30/2021 | 1. Stripper Heat Integration Provides >10% Energy | | | | Savings on 0.1 MWth Capture Unit | | | | 2. Long-Term Energy Savings of >15% from 1000- | | | | hour Process Study | | | | 3. Dewatering Membrane Packing Density Increase to | | | | >400 m ² /m ³ | | | | 4. Aspen Model for Entire Integrated System | | | | 5. TEA Complete for Integrated Process | | | | 6. EH&S Assessment Complete for Integrated Process | | | | 7. Updated State Point Data Table for Membrane | | | | 8. Technology Gap Analysis Complete | ## **Project Risk Management** | Risk Assessment, Management Mitigation and Response Strategies. | | | | | | | |---|--|-----------------------|---|--|--|--| | Description of Risk | | Probability
Impact | | Risk Management Mitigation and Response Strategies | | | | Management Risks | | | | | | | | Subcontract Agreement Delay | | L | M | Dedicated UK staff will be identified | | | | Communication problems among parties involved | | L | М | Careful coordination, routine meeting with entire project team | | | | Resource Risks | | • | • | | | | | Project Cost Overrun | | L | Н | Project team assistance with additional cost share provided by UKRF and CMRG | | | | Project Schedule Overrun | | L | М | Proactive planning, no cost extension | | | ### **Project Risk Management** | Risk Assessment, Management Mitigation and Response Strategies. | | | | | | | | | |---|-----|-------------|--------|---|--|--|--|--| | Description of Risk | TRL | Probability | Impact | Risk Management Mitigation and Response Strategies | | | | | | Technical Risks | | | | | | | | | | Dewatering Membrane Flux too Low | 3 | M | М | Relocate the membrane to high-
temperature site Increase the rejected pressure Alternative zeolite-type such as T-zeolite | | | | | | Liquid/Gas Contact Impeded
by Packing Heat Transfer
Structure | 3 | L | М | Modify the geometrySurface treatment | | | | | | 3-D Printed Packing Material not Compatible for Application (poor heat transfer efficiency) | 3 | L | Н | Redesign internal surface with turbulence
generator Change metal material | | | | | | Current Large CCS Strippers Configuration not Adequate for Split Feed | 4 | L | M | Modifications will be made to current vessel, or new vessel will be obtained 22 | | | | | # Predicted Plant Efficiency, COE, and CO₂ Capture Cost | TOTAL (STEAM TURBINE) POWER, kWe | 740,717 | |---|---------| | AUXILIARY LOAD SUMMARY, kWe | | | Coal Handling & Conveying | 510 | | Pulverizers | 3,850 | | Sorbent Handling & Reagent Preparation | 1,260 | | Ash Handling | 740 | | Primary Air Fans | 1,810 | | Forced Draft Fans | 2,770 | | Induced Draft Fans | 10,700 | | SCR | 70 | | Baghouse | 100 | | Wet FGD | 4,150 | | CO ₂ Capture System Auxiliaries | 13,681 | | CO ₂ Compression | 33,469 | | Miscellaneous Balance of Plant ^{2,3} | 2,000 | | Steam Turbine Auxiliaries | 400 | | Condensate Pumps | 832 | | Circulating Water Pump | 7,894 | | Ground Water Pumps | 707 | | Cooling Tower Fans | 4,087 | | Transformer Losses | 2,569 | | TOTAL AUXILIARIES, kWe | 91,599 | | NET POWER, kWe | 649,118 | | Net Plant Efficiency (HHV) | 33.55% | | Net Plant Heat Rate (Btu/kWhr HHV) | 10,169 | | Consumables | | | As-Received Coal Feed (lb/hr) | 565,820 | | Limestone Sorbent Feed (lb/hr) | 57,835 | | | Case B12A | Case B12B | This Proposal | | |---|------------|-----------|---------------|--| | | Case B IZA | 90% | 90% | | | COE (\$/MWh, 2011\$) | 82.3 | 142.8 | 115.4 | | | CO ₂ TS&M Costs | 0 | 9.6 | 8.2 | | | Fuel Costs | 24.6 | 30.9 | 29.6 | | | Variable Costs | 9.1 | 14.9 | 11.3 | | | Fixed Costs | 9.6 | 15.2 | 12.1 | | | Capital Costs | 39 | 72.2 | 54.1 | | | COE (2011\$/MWh) (excluding T&S) | | 133.2 | 107.2 | | | CO ₂ Captured, lb/MWh | | 1927 | 1632 | | | Cost of CO ₂ Captured (\$tonne CO ₂) | | 66.6 | 44.8 | | | Cost of CO ₂ Captured (\$tonne CO ₂) (excluding T&S) | | 58.2 | 33.6 | | | Incremental COE | | 73.5% | 40.3% | | | Reduction of Incremental COE from Case 12 | | | 45.2% | | | Reduction of COE from Case 12 | | | 19.2% | | >19% COE reduction when compared to Case 12 ### **Acknowledgements** - DOE-NETL: David Lang, Lynn Brickett, José Figueroa - UKy-CAER: Zhen Fan, and Lisa Richburg - Duke Energy, LG&E-KU, EPRI, CMRG Members