

10 MWe CDCL LARGE PILOT PLANT DEMONSTRATION - Phase I Feasibility DE-FE0031582

DOE Kickoff Meeting

Outline

- □ Background
- ☐ Technical Approach for 10 MWe Large Pilot
- □ Project Details
 - Objectives
 - Project Structure
 - Project Schedule
 - Project Budget
- □ Risk Management

2

CDCL Process

Two-stage Counter-current Moving Bed

CDCL Commercialization Path

4

B&W & OSU CDCL Collaboration

Syngas CL Demo at NCCC DOE

Year: 2010-2017

 Design and demonstration of 250 kWth syngas chemical looping facility

DOE Commercialization Phase I

Year: 2012-2013

Conceptual design of 550 MWe commercial plant
Techno-economic analysis (>90 % CO₂, <35 % increase in COE)

Technology gap analysis

DOE Phase II A

Year: 2013-2015

Laboratory cold model testDesign of 250 kWth pilot plant

Cost estimate for construction and test

DOE-ODSA Phase II B

Year: 2015-2017

Construction and test of 250 kWth CDCL facility

DOE-ODSA Heat Integration

Year: 2016-2018

- Combustor simulation
- Heat exchanger network integration and optimization
- Dynamic model of integrated CDCL-steam cycle

DOE-ODSA Adv. Control

Year: 2015-2017

- Develop HLC-SMC process automation control architecture
 Establish algorithm for high temperature ECVT sensor
 Test process control and optimization concepts at 25 kWth scale

DOE- ODSA 10 MWe pre-FEED

Develop a pre-FEED of a 10MWe CDCL pilot plant

Year: 2017-2019

Development of Chemical Looping Platform Technology

Particle Development

Particle Strength Comparison

Oxygen Carrier/Catalyst Particle	Strength (MPa)
OSU OC	120
Other Chemical Looping Combustion	72
Chemical looping Steam Reforming	26
Commercial WGS Catalyst Pellet	6.8
Traditional ATR Catalyst	6.5

Jet Cup

- Stability over 3000 redox cycles at 1000 °C; equivalent to 8 months of commercial operation
- High attrition resistance compared with commercial FCC particles in jet-cup experiment

25 kW_{th} Sub-Pilot Demonstration

- > 800 hours of operational experience
- > 200 hours continuous successful operation
- Smooth solids circulation
- Complete ash separation in reducer.
- Achieve nearly pure CO₂ from reducer outlet
- 17 test campaigns completed

200-hour Continuous Sub-Pilot Test

Combustor Gas Profile

Sample Data: PRB Process Performance

- Continuous steady carbon conversion from reducer throughout all solid fuel loading (5- 25kWth)
- <0.25% CO and CH₄ in reducer outlet = full fuel conversion to CO₂/H₂O
- <0.1% CO and CO₂ in combustor = negligible carbon carry over, nearly 100% carbon capture

Outline

- □ Background
- ☐ Technical Approach for 10 MWe Large Pilot
- □ Project Details
 - Objectives
 - Project Structure
 - Project Schedule
 - Project Budget
- □ Risk Management

CDCL Technology Development

Laboratory 2.5 kWth

- •Particle recyclability and
- Individual reactions in the reducer and combustor

reactivity

25 kWth

- Integrated operation reducer and combustor for more than 200 hours
- Coal conversions
- •CO₂ Purity

250 kWth

- Adiabatic reducer operation for more than 250 hours
- Process efficiency
- •Evaluate emissions
- •Large scale particle manufacturing
- Particle attrition

4 x 2.5 MWe

- Long Term operation
- Coal distribution
- Modular integration and operation - Start up, turn down, shutdown cycles
- Steam generation
- Economics

1 x 70 MWe

- •Commercial Operation of a single module
- Fabrication

Scale Up Plan

x10

x10

x30

x30

1 x 70 MWe

Laboratory 2.5 kWth

Critical Dimension

Scale up Factor:

x1

Reducer reactor

Critical Dimension:

1.5"

25 kWth

Critical Dimension Scale up Factor: **x4**

Reducer reactor

Coal distribution Distance:

6"

Critical Dimension Scale up Factor: **x6**

250 kWth

Reducer reactor Coal distribution Distance:

3'

Critical Dimension Scale up Factor: x2.3

Reducer reactor Coal distribution

Distance:

Critical Dimension Scale up Factor: x2.8

Reducer reactor Coal distribution Distance:

20'

10 MWe Modular Pilot Design

- 4 Modules of 2.5 MWe
- 1st module will be built and operated to validate the design.
- Following modules will be constructed
- Integration of the modules operation and controls

CDCL Steam Generation Scheme

Advantage of Modular Design and Sparing Philosophy

- □ Startup
 - Sequential module startup with sharing resources
- ☐ High Reliability
 - Independent steam generation
 - Easier for scheduling maintenance
 - 4-33% modules provide full load capacity with module-out of service
- **☐** Flexible Operation
 - Fast response
 - Turn down/up
 - Particle exchange among modules

Technology Gap and Mitigation Plan

Design/Technology Issues	Past Mitigation	Ongoing Mitigation	Plan Mitigation
Particles			
Manufacturing Cost	Under OSU's Scope	Particle Manufacturer (JM)	Multiple Manufacturers
Attrition	250 kWth / NCCC	Attrition Tests / 250 kWth	10 MWe Large Pilot
High Temperature Resistance	TGA	TGA / 250 kWth	10 MWe Large Pilot
Reducer	,	·	
Coal Injection & Distribution	25 kWth Sub-Pilot	Coal RXN Model / 250 kWth	10 MWe Large Pilot
Char Residence Time	25 kWth Sub-Pilot	Coal RXN Model / 250 kWth	10 MWe Large Pilot
Ash Separation / Enhancer Gas	CFM / 25 kWth Sub-Pilot	CFM / 250 kWth	10 MWe Large Pilot
Char Carryover	CFM / 25 kWth Sub-Pilot	CFM / 250 kWth	10 MWe Large Pilot
Pressure Drop	Phase I /25 kWth Sub-Pilot	250 kWth	10 MWe Large Pilot
CO ₂ Purity	25 kWth Sub-Pilot	250 kWth	10 MWe Large Pilot
Sulfur, NOx, Hg Emissions	25 kWth Sub-Pilot	250 kWth	10 MWe Large Pilot
Alkaline Management	2" BFB Studies	2" BFB Studies	10 MWe Large Pilot
Combustor			
Heat Exchanger surface	B&W's CFB Technology	B&W's CFB Technology	10 MWe Large Pilot
Auto-thermal Operation	Phase I (Calculation)	250 kWth	10 MWe Large Pilot
Process			
Operation	25 kWth Sub-Pilot / NCCC	250 kWth	10 MWe (modular)
Start up/Shut down	25 kWth Sub-Pilot / NCCC	250 kWth	10 MWe (modular)
Safety	25 kWth Sub-Pilot / NCCC	250 kWth	10 MWe (modular)

250 kW_{th} Pilot Plant - Design

Pilot Design:

- Reducer Design
- Material and Energy Balances
- Support Structure Design
- Detail Construction Drawings

Specifications

- Materials: Refractory lined Carbon Steel
- Max Operating Temperature: 2012 °F
- Reducer: Counter-current moving bed
- Combustor : Bubbling bed
- Overall Height: 32 ft
- Footprint = 10' x 10'
- Thermal Rating: 250 kWth
- Coal Feed Rate: 70 lb/hr
- Coal Size: Pulverized coal
- Particle Transport: Pneumatic
- Oxygen Carrier: Iron based
- Size: 1.5 mm

250 kW_{th} Pilot Plant

250 kW_{th} Test Campaign Summary

Test	Campaigns	Main Achievements	Lessons Learned
#1	Refractory bake out	Heated up to 1600 °F for more than 24 hrs	Quench systemNeed extra NG injection
#2	Unit shake down, start up and operation	 Reached 1800 °F Achieved expected solid circulation Characterization of temperature/pressure distributions, gas sampling and analysis 	 Coal injection pressure unbalance Blower capacity low at startup
#3	Coal injection test	 Reached 1950 °F Injected coal successfully High volatile conversion Attrition rate < 0.18%/hr 	Air infiltrationAgglomeration due to over heating

Lessons Learned and Solutions

Lessons Learned	Solutions
High flame temp may cause particle agglomeration	Operate burner under a leaner condition to maintain a lower flame temperature
Air should be preheated to a higher temperature to reduce burner demand	Modify the flange and piping to be stainless steel to allow higher inlet temp of air
Air infiltration exists under vacuum condition	Seal the reducer better before next testOperate under positive pressure

250 kW_{th} Pilot – Test Results

Attrition rate < 0.18%/hr

250 kW_{th} Pilot – Test Results

- high coal volatile conversion
- Carbon slip into the combustor not observed

Goal of Ongoing Work

- Temperature of Bottom Moving Bed reducer above 1650 °F
- Limit the amount of agglomerates and maintain long-term (>300 hours)
 stable solid circulation
- Demonstrate reduction-oxidation cycling of particles
- Continuous operation with coal injection for minimum 24 hours
- Coal conversion > 90%
- Attrition rate under reaction condition < 0.1%/hr
- Achieve adiabatic reducer operation

Outline

- Background
- ☐ Technical Approach for 10 MWe Large Pilot
- □ Project Details
 - Objectives
 - Project Structure
 - Project Schedule
 - Project Budget
- □ Risk Management

Phase I Objectives

- Form the team
- Secure funding and commitments
- Host site agreement
- Environmental information volume
- Cost and schedule estimates for Phase II

Phase II/III Objectives

NETL

10 MWe PHASE II

Year: 2019-2020

- 2.5 MWe module design
- CDCL integration with existing plant
- Balance of Plant (BOP) equipment specifications
- Process control specifications
- Proposal and cost estimates for Phase III

NETL

10 MWe PHASE III-A

Year: 2020-2022

Construction and operation of first module

Commissioning first module and BOP

NETL

10 MWe PHASE III-B

10 WWC I HASE III E

Year: 2022-2025

Construction of remaining modules

Commissioning and testing of full plant

Objective: Demonstrate 10 MWe CDCL pilot plant

Project Participants

- Federal Agencies
 - DOE/NETL
- State Agency
 - Ohio Development Services Agency
- Project Participants
 - Babcock & Wilcox (B&W)
 - Ohio State University (OSU)
 - Clear Skies Consulting
 - Dover Light & Power (DPL)
 - Trinity Consultants
 - Worley Parsons
 - Electric Power Research Institute (EPRI)
- Industrial Review Committee
 - American Electric Power
 - Duke Energy
 - FirstEnergy
 - CONSOL Energy
 - Johnson Matthey (JM)

Development Services Agency

Clear Skies Consulting

Division of Responsibility

Team	Responsibility
Babcock & Wilcox	Project management; technology lead; CDCL engineering design
Ohio State University	Technology support
Clear Skies Consulting	Provide industrial representation and guidance
Dover Light & Power	Provide host site and the related information
Johnson Matthey*	Large-scale oxygen carrier manufacture
EPRI	Techno-economic analysis
Worley Parson	Provide engineering services for the BOP to integrate CDCL equipment
Trinity Consulting	Environmental impact assessment, EIV and NEPA

^{*} Join in Phase II/III

Phase I Team Organization

Tasks and Schedule

							_		ase		1.0			_
	10 MWe CDCL Large Pilot Facility	۲,			_			dget		$\overline{}$				
D		Ľ	Q	•		Q/	_	FC	ſΤ	Ľ	Q2		FC	(3
Project Tasks	Description	4	5	6	_		_	10 1:	1 12	1	2		019 4 5	6
		Г												П
		H			Н		Н	_	-	Н		+	+	++
1.0	Project Management, and Reporting (Phases I, II, III)													
	General Project Management													
	Project Review Meetings	Г												П
	Quarterly Progress Reports	H			П					Н				+
	Project Final Report and Close-out Documents	Н						\dashv					+	
2.7	Milestone: Final Report	\vdash						+	+	Н		+	+	
	PHASE I	H		Н	Н			+	+	Н		+	+	+
	FRASEI	Н		Н	\dashv		Н	+	+	Н	Н	+	+	+
		Н						+	+			+	+	++
2.0	Project Commitment and Complete Environmental Information Volume (EIV)													
	Host Site Agreement and Team Commitments							\top	\top	П	П	T	\top	\forall
	Draft Environmental Assessment													П
2.3	Develop Environmental Information Volume													
	Milestone: Environmental Information Volume (EIV)													
	Draft State of Ohio EPA Permit-To-Install (PTI)	L					Ш			Ш				Ш
2.5	Draft Mitigation Action Plans (MAP)	L						_	_	Ш				\blacksquare
		L						_	_			_	+	\sqcup
2.0														
	Cost and Schedule Estimates for Phase I	H										+	+	+
	Develop Phase II Project Work Breakdown Structure (WBS) Prepare a Cost Breakdown and Estimate for Phase II Workscope	H		-	Н				+			+	+	++
3.2	Milestone: Cost Breakdown Structure for Phase II	H		\vdash	\vdash	\vdash	Н						+	++
	Milestone: Cost Estimate for Phases II and III			\vdash	\vdash	\vdash	Н	+	+	Н	\vdash		+	++
	ivillestone. Cost Estimate for Phases II and III	H				\vdash	Н	+	+	Н	\vdash		+	++
	Milestone: Topical Report				\exists			+	+				+	\forall

						ΡI	nase	: II			
	10 MWe CDCL Large Pilot Facility		В	ud	get	Рe	riod	12		BP:	3
			<u>Q2</u>		<u>c</u>	23		Q4	<u>.</u>	9	<u>Q1</u>
Project	Description						2019	•			
Tasks	Description	1	2	3	4	5	6 7	8	9	10	11 12
	PHASE II								П		
5.0	Release of Functional Specifications						T		Ħ	\exists	T
5.1	Heat and Material Balance								H		十
5.2	Mechanical Design and Drawings				Ħ		T	T	Ħ	\neg	十
5.3	Electrical Designs and Drawings								Ħ		T
5.4	General Arrangement Drawings									T	
5.5	Hazard Design and Operation (HAZOP)										
5.6	NEPA Study										
5.7	Phase III Test Plan								Ш		
5.8	Operating Procedures				Ш	4			Ш	\Box	\perp
6.0	Balance of Plant Equipment Specifications										
6.1	Balance of Plant Specifications and Modifications						\perp				
6.2	Environmental Control Equipment										
6.3	CO2 Compression Equipment							\perp	Ш	\Box	\perp
6.4	Waste Treatment and Disposal				Ш			\perp	Ш	_	\perp
7.0	CDCL Integration with Existing Steam Turbine Equipment Specifications										
7.1	Steam Turbine Components										
7.2	CDCL Specific Piping and Instrumentation Drawings								Ш		\perp
8.0	Process Controls Specifications & Drawings										
8.1	Plant PLC specifications						\neg			\neg	
8.2	Upgrade Existing Controls to Accommodate CDCL unit								П	\Box	
8.3	Focal Point Optimization								Ш		
8.4	ProTRAX Dynamic Model & Simulator								Ш		
8.5	P&IDs and Drawings								Ш	_	\perp
9.0	General Arrangement Drawings (Process and Equipment)										
9.1	CDCL Equipment Arrangement Drawings								Ш		
9.2	Balance of Plant General Arrangement Drawings				Ш				Ш		
10.0	Building and Utilities Design and Cost Estimate										
10.1	General Construction - project manager, construction supervision										
10.2	Site Construction -building excavation, utilities, pavements, site upgrades				Ш		\perp		Ш		
10.3	Concrete - building and equipment foundations concrete						\perp		Ш	\Box	\perp
10.4	Masonry, Metals, Wood & Plastic, Building Envelope, Doors & Windows, Finishes		$oxed{oxed}$					\perp	Ш	\dashv	\perp
10.5	Special Construction, Fire Protection, Restrooms, Lighting, General Utilities				Ш			\perp	Ш	\dashv	\perp
11.0	Prepare Phase III Proposal & Firm Cost Estimate				Ш	\perp			Ш	\Box	\perp
11.1	Prepare Firm Cost Estimate and Schedule				Щ	_			Ш	_	\perp
11.2	Prepare Phase III Proposal			_	Ш	_	\perp	\perp		\dashv	\perp
12.0	Purchase Requisitions for Mechanical Components				Ш	\perp	\perp	\perp	Щ		
12.1	CDCL-Specific Components - fabricated and purchased	L	\perp	L	Ш	\downarrow	\perp	\perp	Ш		
12.2	CDCL Piping and Instrumentation Drawings		Ш		Щ	\downarrow	\perp	\perp	Ш	_	
13.0	Purchase Requisitions for Instrumentation and Controls				Ш	\perp	\perp	\perp	Ш		
13.1	PLC Components and Upgrade to Existing controls Requisitions		\Box		П	\bot			Ш		
13.2	Balance of Plant Instrumentation and Controls Requisitions		\Box	L	Щ	\perp	\perp	\perp	Ш		
13.3	CDCL Integration with Existing Steam Turbine Equipment Requisitions	L	Ш		Щ	4	\perp	\perp	Ш	_	
14.0	Order long-lead items (optional)				Ш	\perp	\perp	\perp	Ш	\Box	
	Order Steel and Materials of Construction										

	10 MWa CDCI Laura Bilat Facility	D.:	da	et P	o rid	v4 3)		1				III-A erio						$\overline{}$	PB3	
	10 MWe CDCL Large Pilot Facility		uge Q2	:(P	Q			Q4			uge (<u>)1</u>	T	Q2			<u>23</u>		Q4	+	<u>Q1</u>	_
Project	Description			"		20	20									2	2021	Ĺ			
Tasks	Description	1	2	3 4	1 5	6	7	8	9	10	11 13	2 1	2	3	4	5	6 7	8	9	10 11	12
	PHASE III - A												$oxed{\Box}$						\Box		L
		Ц		\downarrow	-	-				_	\perp	ļ	\downarrow	Ш		4	+	\perp	\dashv	+	_
15.0	Construction and Operation - First Module							Ш		_	_	\perp	\bot	\sqcup	Ц	4	4	\perp	\sqcup	\bot	_
15.1	Equipment Procurement								Щ	_	\perp	\perp	\perp	Ш	Щ	4	\bot	\perp	\sqcup	\bot	_
15.2	Procurement of Electrical and Instrumentation Equipment	Ш						Ц	Ц	4	\perp	\perp	\perp	Ш	Ц	4	\perp	\perp	\sqcup	\bot	_
15.3	Fabricated Components	-						Ш	Ц	4	\perp	\perp	\perp	Ш	Ц	4	\perp	\perp	\sqcup	\bot	_
15.4	Supplies and Consumables												\perp	Ш		4	_	\perp	Ц	\perp	L
15.5	Oxygen Carrier Manufacturing												\perp	Ш	Ц	_	\perp	\perp	Ц	\perp	L
15.6	Building Erection	Ц	_	_									\perp	Ш	Ц	4	\perp	\perp	Ц	\perp	L
15.7	Equipment Installation	Ц		\perp				Ш								_	\perp	\perp	Ц	\perp	_
15.8	Fabricated Components Installation	Ц						Ш			\perp								Ц	\perp	L
15.9	Instrumentation and Controls Installation	Ц	4	\downarrow	+	-		Ш		4	\perp	\downarrow				4	+	Ļ	\dashv	+	-
16.0	Commissioning of First Module and BOP Equipment	H	\dashv	+	+	+		Н	\dashv	\dashv	+	+	+	Н	Н	+	+	\vdash	\vdash	+	_
		H	\dashv	+	+	+		Н	\dashv	\dashv	+	+	+	\vdash	Н					+	
16.1	Individual Equipment Commissioning	\rightarrow	\dashv	+	+	+		Н	\dashv	+	+	+	+	Н	Н						-
16.2 16.3	Cold-Flow Tests Commissioning Hot-flow Test Commissioning and Refractory Dry out	\rightarrow	\dashv	+	+	+		Н	\dashv	+	+	+	+	Н	Н	+	+	₽			-
16.3	Upgrades to First Module Design Specifications	\rightarrow	\dashv	+	+	+		Н	\dashv	+	+	+	+	Н	Н	+	+	+			

											Pł	nase	III-B	,									
	10 MWe CDCL Large Pilot Facility	Budge	Budget Period 3 Budget Period 3 Budget								et P	eriod		BP6									
		Q2		Q3		<u>Q4</u>	9	<u> 21</u>	Q	2	Q3	3	Q4	1	Q1		Q2		Q3	9	Q4	<u>Q1</u>	
Project	Dogoviskiow				2022	2						202	23						2	024			
Tasks	Description	1 2	3 4	4 5	6 7	8 9	10	11 12	1 2	3	4 5	6	7 8	9	10 11	12	1 2	3 4	5 6	7	8 9	10 11	12
	PHASE III-B																						
17.0	Construction of remaining modules		T	\sqcap	T		П		П	П		П		П	П		\Box	T	П	П		П	
17.1	Upgrades to remaining module design					П				П		П		П	П				П	П			
17.2	Equipment and Instrumentation									П				П					П	П			
17.3	Fabricated Components									П		П		П			П		П	П			
17.4	Supplies and Oxygen Carrier Manufacturing																						
17.5	Construction	\Box	\perp	Ш	\perp		Ш			Ш		Ш		Ш	Ш	\perp			Ш	Ш	\perp	Ш	
17.6	Equipment Installation	Ш	_	Ш	\perp	$\perp \perp$	Ш		Ш	Ш		Ш		Ш	Ш		Ш	\perp	Ш	Ш	\perp	Ш	
17.7	Fabricated Components Installation	Ш	_	Ш	\perp	$\perp \perp$	Ш		Ш	Ш	\perp	Ш		Ц	Ш				Ш	Ш	\perp	Ш	
17.8	Instrumentation and Controls Installation	\perp	4	\sqcup	\perp	$\perp \perp$	Ш	\perp	Щ	\sqcup	\bot	Ш	\perp	Н	Ш	4	Ш		\sqcup	\sqcup	\bot	Ш	
40.0		\dashv	+	+	+	++	H	+	\vdash	₩	+	Н	+	Н	Н	+			\vdash	+	+	\vdash	4
18.0	Commissioning and testing of full plant	\dashv	+	\dashv	+	++	\vdash	+	\vdash	\dashv	+	Н	+	\vdash	+	_					-	$\vdash\vdash$	
18.1	Commissioning of second, third and fourth module	\dashv	+	\dashv	+	++	\vdash	+	\vdash	\dashv	+	Н	+	\vdash	+	-	Н		Н	+			
18.2	Commissioning of full plant	\dashv	+	\dashv	+	++	\vdash	+	\vdash	\dashv	+	Н	+	\vdash	+	+	++	+	H	Ш			
18.3	Operation and Testing of Complete System	+	+	+	+	++	\vdash	+	\vdash	₩	+	Н	+	₩	+	+	++	+	₩	+			
19.0	Final Report Preparation	+	+	+	+	++	\forall	+	+	$\forall \exists$	+	\forall	+	\vdash	+	+	++	+	+	+	+	\vdash	_
19.1	·	\dashv	+	+	+	++	╁	+	+	╫	+	$\vdash \vdash$	+	₩	+	+	++	+	++	╫	+		
	Update on Thecno-Economic Assessment of the CDCL technology	\dashv	+	+	+	++	╁	+	+	╫	+	\vdash	+	\vdash	+	+	++	+	++	+	+		F
19.2	Final Report and Close Out Documents	\dashv	+	+	+	++	╁┤	+	\vdash	╫	+	₩	+	₩	+	+	++	+	₩	╫	+		

Host Site: Dover Light & Power

Existing

- 20 MWe Stoker coal fired boiler
 Planning
 - 10 MWe natural gas package boiler
 - 10 MWe CDCL unit
 - Increase power capacity
 - Preserve a balance between coal and natural gas
 - Potential CO₂ market from local industries

20 MWe Steam Turbine

Project Budget

Recipients	Federal	Cost-share	Total
PHASE I (4/1/2018	s – 7/31/2019)		
B&W	\$377,859	\$50,000	\$427,859
OSU	\$240,000	\$72,500	\$312,500
EPRI	\$79,732	\$19,932	\$99,664
DL&P	\$0	\$35,000	\$35,000
Clear Skies	\$43,603	\$10,901	\$54,504
Total	\$741,194	\$188,333	\$929,527
Percent	79.74%	20.26%	100%
PHASE II (2019-20	20) - Estimated		
Total	\$3,000,000	\$750,000	\$3,750,000
PHASE III (2020-20	25) - Estimated		
Total	\$40,000,000	\$10,000,000	\$50,000,000

Outline

- □ Background
- ☐ Technical Approach for 10 MWe Large Pilot
- □ Project Details
 - Objectives
 - Project Structure
 - Project Schedule
 - Project Budget
- □ Risk Management

Risk Management

Description of Risk	Probability	Impact	Risk Mitigation Strategies
Delay in design activities	Moderate	Moderate	Sequence the design activities to ensure that the cost estimates for Phases II can be developed
Unavailable resources	Moderate	Moderate	 Accommodate B&W's personnel to satisfy the project needs as well as B&W commercial needs Give this project high priority Look for contractors outside B&W
Poor Project Execution	Low	Moderate	 B&W has extensive experience executing similar or larger DOE projects Develop project breakdown structure and task activities Track performance against deliverables and milestones
Delay in contract release	Low	Moderate	B&W has many contracts with DOE-NETL and has compiled terms and conditions so contract negotiation should be quick.
Cost overruns	Low	Moderate	 Track costs associated with major tasks separately B&W will notify DOE on any possible budget variance and how to remedy the situation
Safety	Low	High	No operation of experimental or commercial facilities is required as part of the Phase I scope
Unable to acquire the design data specific to 10 MWe plant	Moderate	High	 Continue with the design of the plant until we gather the required information Perform additional 250 kWth pilot tests to gather such information with non-federal funds Install one module first and test it

Acknowledgements

This presentation is based upon work supported by the Department of Energy under Award Number DE-FE0031582 and the Ohio Development Services Agency under Award Number OER-CDO-D-17-03.

