### Flameless Pressurized Oxy-combustion Large Pilot Design, Construction, and Operation: Phase I

#### **DOE National Energy Technology Laboratory**

Project Number: DE-FE0031580 5/23/2018

Principal Investigator:
Joshua Schmitt

Federal Share: \$998,862

Cost Share: \$249,715

Total: \$1,248,577

**Project Team:** 

SwRI, Sargent & Lundy, ITEA, EPRI, GE Global Research, Peter Reineck Associates





#### Overview

- Team, Budget, and Schedule Overview
- Objectives
- Background on the Technology
- Project Tasks
- Project Schedule
- Project Spending
- Reporting, Deliverables, and Risk





### **Project Team Overview**







### Project Budget Overview

|                             | Budget<br>4/01/2018 · |            |             |
|-----------------------------|-----------------------|------------|-------------|
|                             | Federal Share         | Cost Share | Total       |
| SwRI                        | \$419,126             | \$19,796   | \$438,922   |
| Sargent & Lundy             | \$320,000             | \$80,000   | \$400,000   |
| ITEA                        | \$90,060              | \$90,000   | \$180,060   |
| EPRI                        | \$79,731              | \$19,933   | \$99,664    |
| GE Global Research          | \$39,945              | \$9,986    | \$49,931    |
| Peter Reineck<br>Associates | \$50,000              | \$30,000   | \$80,000    |
|                             |                       |            |             |
| Total                       | \$998,862             | \$249,715  | \$1,248,577 |
| Cost Share                  | 80.00%                | 20.00%     |             |





### Schedule Overview

|                                                                                             |        | Schedule |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
|---------------------------------------------------------------------------------------------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|
|                                                                                             | Apr-18 | May-18   | Jun-18 | Jul-18 | Aug-18 | Sep-18 | Oct-18 | Nov-18 | Dec-18 | Jan-19 | Feb-19 | Mar-19 | Apr-19 | May-19 | Jun-19 | Jul-19        |
| Task 1.0 - Project Management and Planning                                                  |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
|                                                                                             |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
| Task 2.0 - Site Selection and Securing Commitments                                          |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
| Subtask 2.1 - Host Site Review and Final Selection                                          |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
| Subtask 2.2 - Assessment of Cost Share for Future Phases                                    |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
| Subtask 2.3 - Securing Commitment Letters for Final Site and Phase II Participants          |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
| Task 3.0 - EIV and Preparation for NEPA                                                     |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
| Subtask 3.1 - Assessment of Site and Production of the EIV                                  |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
| Subtask 3.2 - Selected Site Permitting Preparation and Planning of NEPA Activities          |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
| Task 4.0 - Design Evaluation and Vendor Sourcing of the Combustor and OTSG                  |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        | <del></del>   |
| Subtask 4.1 - Review of Combustor and OTSG Design and Operation                             |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        | <b>—</b>      |
| Subtask 4.2 - Assessment of Fabrication and Construction of the Combustor and OTSG          |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        | -             |
| Subtask 4.3 - Minimization of Capital and Operating Costs of the Combustor and OTSG         |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        | -             |
| Subtask 4.4 - Sourcing Competitive Vendors for Combustor and OTSG Fabrication               |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
| Subtask 4.4 - Sourcing competitive vendors for combustor and O156 Pabrication               |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
| Task 5.0 - Development of an Advanced Hot Gas Turbo-expander                                |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
| Subtask 5.1 - Review of Existing Turbo-expander Technologies                                |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
| Subtask 5.2 - Sizing and Performance Estimate of Two Advanced Turbo-expanders               |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
| Subtask 5.3 - Turbo-expander Design with Recommendations for Materials, Bearings, and Seals |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
| Task 6.0 - Cost and Schedule of Significant Auxiliary Equipment                             |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        | <del></del>   |
| Subtask 6.1 - Review and Definition of Significant Auxiliary Equipment                      |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
| Subtask 6.2 - Cost of Significant Auxiliary Equipment                                       |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        | $\overline{}$ |
| Subtask 6.3 - Schedule of Significant Auxiliary Equipment                                   |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
| Subtask 6.4 - Design, Cost, and Schedule Development of Coal Handling Equipment             |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
| Subtask 6.4 - Design, Cost, and Scriedale Development of Coarnanding Equipment              |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
| Task 7.0 - Adaptation of Work Completed Under Previous Projects                             |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
| Subtask 7.1 - Commercial TEA Adaptation to Current Project                                  |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
| Subtask 7.2 - Review of Specifications, Quotes, and Layouts from Previous Work              |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
| Subtask 7.3 - Minimization of Capital Costs from Previous Work                              |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |
| Subtask 7.4 - Minimization of Operating Costs from Previous Work                            |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |               |





#### What are the objectives of the proposed project?

- Secure commitments from the chosen host site
- Create an Environmental Impact Volume (EIV) and prepare for the NEPA process
- Design evaluation and vendor sourcing of the combustor and once-through steam generator (OTSG)
- Cost and schedule of auxiliary equipment
- Adaptation of work under previous projects





### Background on FPO

- Pressurized atmosphere of water and CO<sub>2</sub> under "volume expanded combustion"
  - FPO combustion is more locally controllable with more uniform temperatures
  - Pressurized firing with oxy-combustion also improves cycle efficiency
- Chemical balance in combustion is near stoichiometric
  - Achieved through CO<sub>2</sub> recycle, water, and oxygen balance control
  - Oxidizing environment
- Almost zero carbon content in incombustible products
  - Traditional: flying and falling ash particles
    - Must be filtered and collected from gas stream
  - FPO: slag with near-zero carbon content
    - Drains out the bottom of the combustor
    - Particulate still exists in exhaust but at reduced quantities and sizes

Traditional Combustion with Flame Front



Flameless Pressurized Combustion



Traditional Combustor
Products: Particulate



**FPO Combustor Products:** Near-zero carbon, neutral slag







#### What is the FPO Cycle?

- Slurry of milled coal and water combusted under pressure
- Hot combustor gas is quenched through mixing
- Recycling flow enters OTSG
- Portion of flow leaves the process with before the OTSG with heat and pressure and is expanded
- A large percentage of combustion products are recycled
  - Some recycled flow used for quenching
  - The remainder of recycled flow is mixed with pressurized oxygen and injected into the combustor







#### What is the State of the Technology?

- 5 MWth plant in Italy
  - Capable of 4 bar (58 psi) pressure
  - Over 18,000 hours of testing experience
  - Technology proven with high and low rank coals
- 15 MWth plant in Singapore
  - 2 years of operation
- Components that need large pilot demonstration: Combustor, OTSG, and turbo-expander







#### Commercial Case for FPO

- 350 MWe commercialization study already performed by ITEA with ENEL
  - Costed out earlier version of the system
  - Provided commercial scale material and energy balances
- Update existing commercial economic assessment with results from 50 MWth design efforts
  - Targeting a 500 MWe output to match DOE baseline studies
  - Add features and components not included in the 50 MWth pilot
  - Demonstrate a path to cost reduction goals

| Parameter                  | Unit                      | SCPC no CC<br>Base Line | ITEA FPO /<br>Integral CCS<br>Estimate | ITEA FPO /<br>No CCS<br>(Retrofitable) |  |  |  |
|----------------------------|---------------------------|-------------------------|----------------------------------------|----------------------------------------|--|--|--|
| Power in LHV               | MWth                      | 1,345                   | 1,410                                  | 1,410                                  |  |  |  |
| Gross Power                | MWe                       | 580                     | 695                                    | 695                                    |  |  |  |
| Parasitic<br>Power         | MWe                       | 30                      | 145                                    | 113                                    |  |  |  |
| Net Power                  | MWe                       | 550                     | 550                                    | 582                                    |  |  |  |
| Efficiency %<br>LHV        | %                         | 40.9%                   | 39.0%                                  | 41.3%                                  |  |  |  |
| Capital                    | \$M                       | \$869                   | \$1,281                                | \$1,243                                |  |  |  |
| CAPEX                      | \$/kWe \$1,579            |                         | \$2,328                                | \$2,136                                |  |  |  |
| LCOE – Bit.<br>Coal        | - <b>Bit.</b> \$/MWh \$68 |                         | \$78                                   | \$73                                   |  |  |  |
| LCOE compared to Base Line |                           |                         | 116%                                   | 108%                                   |  |  |  |
| LCOE – PRB<br>Coal         | \$/MWh                    | NA                      | \$73                                   | \$68                                   |  |  |  |
| L                          | COE compar                | 108%                    | 100%                                   |                                        |  |  |  |





## Other Project (DE-FE0027771): Technical Development

- Aspen Plus Model of FPO cycle at 50 MWth and commercial scale 500 MWe
- ITEA one-dimensional modeling and CFD of OTSG and combustor
- Specification of major equipment
- Preliminary definition of pilot figures of merit
- Outline of a pilot test plan





## Other Project (DE-FE0027771): Economic Development

- Preliminary selection of University of Wyoming as host, with Coal Creek, ND as backup
- Pilot plant layout, cost and schedule
- Commercial scale techno-economic assessment
- Preliminary permit plan





### **Project Tasks Overview**

- Task 1.0 Project Management and Planning
- Task 2.0 Site Selection and Securing Commitments
- Task 3.0 EIV and Preparation for NEPA
- Task 4.0 Design Evaluation and Vendor Sourcing of the Combustor and OTSG
- Task 5.0 Development of an Advanced Hot Gas Turboexpander
- Task 6.0 Cost and Schedule of Significant Auxiliary Equipment
- Task 7.0 Adaptation of Work Completed Under Previous Projects





## Task 1.0 - Project Management and Planning

- Manage project according to Project Management Plan (PMP) to meet all technical, schedule, and budget objectives and requirements
- Documentation of project plans, results, and decisions, and project reporting and briefing requirements are satisfied
- Update the PMP 30 days after award and as necessary
  - Changes to the technical basis, cost, and/or schedule for the project
  - Significant changes in scope, methods, or approaches
  - As otherwise required to ensure that the plan is the appropriate governing document for the work required to accomplish the project objectives
- Management of project risks
  - Identify, assess, monitor, and mitigate technical uncertainties and schedule, budgetary, and environmental risks
  - Document and report updates to major risk factors





## Task 2.0 – Site Selection and Securing Commitments

- Subtask 2.1 Host Site Review and Final Selection
  - Assessment of sites from previously developed work under new contractor
    - Assessment of available space, existing infrastructure, accessibility, environmental considerations, cost-share potential, and other factors
  - The final site recommendation will be delivered in the Phase I Topical Report
- Subtask 2.2 Assessment of Cost Share for Future Phases
  - Interview the power industry
    - Solicit feedback on the proposed technology, the pilot-plant project, and their potential for providing cost
    - Up to 15 total organizations to be selected in consultation with the team
    - A set of questions will be developed and the feedback will be included in the Phase I Topical Report





### Task 2.0 – Site Selection and Securing Commitments

- Subtask 2.3 Securing Commitment Letters for Final Site and Phase II Participants
  - Negotiations with sites and other interested parties that have the potential of adding thirdparty cost share to the project
  - By mid-way through Phase I, commitment letters will be delivered to the DOE
    - The host site
    - Any parties deemed necessary in Phase II





### Task 3.0 – EIV and Preparation for NEPA

- Subtask 3.1 Assessment of Site and Production of the EIV
  - An EIV will be developed for the primary candidate site
    - The EIV will follow DOE guidelines and describe characteristics of the site that will assist in completing the NEPA process
- Subtask 3.2 Selected Site Permitting
   Preparation and Planning of NEPA Activities
  - Any additional arrangements or permits needed with the site
    - Approaching or securing a NEPA contractor





### Task 4.0 – Design Evaluation and Vendor Sourcing of the Combustor and OTSG

- Subtask 4.1 Review of Combustor and OTSG Design and Operation
  - A review of the combustor and OTSG technology
  - Assess the design for capabilities, limitations, and potential for cost reduction
- Subtask 4.2 Assessment of Fabrication and Construction of the Combustor and OTSG
  - The steps needed to fabricate and construct the combustor and OTSG in the U.S. will be produced and analyzed for feasibility
  - Requirements for quality control, tolerances, and other concerns in fabrication will be addressed under this subtask





### Task 4.0 – Design Evaluation and Vendor Sourcing of the Combustor and OTSG

- Subtask 4.3 Minimization of Capital and Operating Costs of the Combustor and OTSG
  - Design of the combustor and OTSG will undergo minor revision to improve capital costs
    - Assessment of materials and other cost drivers will also help improve the cost of these components
    - A review will be made of the operating requirements of the combustor and OTSG and this analysis will target areas of potential operating cost reduction
- Subtask 4.4 Sourcing Competitive Vendors for Combustor and OTSG Fabrication
  - In an effort to minimize cost, the team will solicit multiple bids from vendors for the combustor and OTSG fabrication
    - These bids will be selected for cost, capability, and quality control





## Task 5.0 – Development of an Advanced Hot Gas Turbo-expander

- Subtask 5.1 Review of Existing Turbo-expander Technologies
  - Assessment of current technologies used for expansion of hot flue gas from coal fuel sources
  - Select two candidate turbo-expander designs for assessment
    - Design criteria and a weighted decision matrix
- Subtask 5.2 Sizing and Performance Estimate of Two Advanced Turbo-expanders
  - Two candidate advanced turbo-expander designs will be evaluated with one-dimensional performance models
  - Preliminary sizing of the turbo-expander with performance estimate





## Task 5.0 – Development of an Advanced Hot Gas Turbo-expander

- Subtask 5.3 Turbo-expander Design with Recommendations for Materials, Bearings, and Seals
  - A turbo-expander design will be chosen
    - Basis of performance results and stress and material requirements
    - Preliminary design will be used to develop the high temperature turbo-expander in Phase II





# Task 6.0 – Cost and Schedule of Significant Auxiliary Equipment

- Subtask 6.1 Review and Definition of Significant Auxiliary Equipment
  - Further development of valves, piping, balance of plant equipment, and other equipment
  - Not addressed in previous development efforts
  - Auxiliary equipment must contribute significantly to the pilot cost or schedule to merit early design development
- Subtask 6.2 Cost of Significant Auxiliary Equipment
  - The cost of the significant auxiliary equipment will be incorporated into an overall project cost estimate





# Task 6.0 – Cost and Schedule of Significant Auxiliary Equipment

- Subtask 6.3 Schedule of Significant Auxiliary Equipment
  - A schedule for fabrication and construction or procurement of significant auxiliary equipment
  - Integrated into an overall project schedule adapted from previous work
- Subtask 6.4 Design, Cost, and Schedule Development of Coal Handling Equipment
  - A coal handling system will be designed
  - The team will go into further detail of the coal handling equipment required for FPO
  - The cost and schedule of the necessary equipment will be added to the estimations from previous work





## Task 7.0 – Adaptation of Work Completed Under Previous Projects

- Subtask 7.1 Commercial Techno-Economic Analysis (TEA) Adaptation to Current Project
  - A review of the pilot-plant cost estimation and the commercial TEA,
    - Supporting and validating that the costing properly uses the NETL QGESS report procedures and complies with required AACE estimate class
- Subtask 7.2 Review of Specifications, Quotes, and Layouts from Previous Work
  - Conduct an assessment of the work that has already been completed
    - Team members not involved in previous work
    - Help assess the equipment that requires further development or are under-defined in specifications from previous work





## Task 7.0 – Adaptation of Work Completed Under Previous Projects

- Subtask 7.3 Minimization of Capital Costs from Previous Work
  - An assessment of the capital costs of the large pilot
    - Review of vendor quotes
    - Target areas of high capital cost and seek methods to reduce the costs
    - Effort to optimize overall system costs and minimize pilot funding requirements
- Subtask 7.4 Minimization of Operating Costs from Previous Work
  - An assessment of the operating costs of the large pilot
    - A review start-up, shutdown, and operating procedure
    - Staffing and personnel requirements will be analyzed for excess in cost
    - Safety and operational standards will be checked
    - Minimize pilot-plant cost share and funding requirements
- Subtask 7.5 Cost and schedule estimates
  - Revised design information to update the cost and schedule estimates for Phases II and III.





### Schedule Review

|                                                                                             |        | Schedule |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
|---------------------------------------------------------------------------------------------|--------|----------|---------|--------|---------|--------|--------|---------|--------|---------|--------|----------|--------|----------|---------|--------|
|                                                                                             | Apr-19 | May-18   | lun-18  | Inl-18 | Λιισ-18 | Sen-18 | Oct-18 |         |        | lan-19  | Feb-19 | Mar-19   | Apr-19 | May-19   | lun-19  | Jul-19 |
| Task 1.0 - Project Management and Planning                                                  | Apr 10 | Widy 10  | 3011 10 | 301 IO | Aug 10  | 3CP 10 | Oct 10 | 1404 10 | DCC 10 | 3011 13 | 100 13 | IVIUI 13 | Apr 13 | Ividy 15 | Juli 15 | Jul 1  |
| Tust 210 110 Jeet management and 1 animing                                                  |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
| Task 2.0 - Site Selection and Securing Commitments                                          |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
| Subtask 2.1 - Host Site Review and Final Selection                                          |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         | i      |
| Subtask 2.2 - Assessment of Cost Share for Future Phases                                    |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
| Subtask 2.3 - Securing Commitment Letters for Final Site and Phase II Participants          |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
| Task 3.0 - EIV and Preparation for NEPA                                                     |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
| Subtask 3.1 - Assessment of Site and Production of the EIV                                  |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         | Ī      |
| Subtask 3.2 - Selected Site Permitting Preparation and Planning of NEPA Activities          |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
| Task 4.0 - Design Evaluation and Vendor Sourcing of the Combustor and OTSG                  |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
| Subtask 4.1 - Review of Combustor and OTSG Design and Operation                             |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
| Subtask 4.2 - Assessment of Fabrication and Construction of the Combustor and OTSG          |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
| Subtask 4.3 - Minimization of Capital and Operating Costs of the Combustor and OTSG         |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         | i      |
| Subtask 4.4 - Sourcing Competitive Vendors for Combustor and OTSG Fabrication               |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
| Task 5.0 - Development of an Advanced Hot Gas Turbo-expander                                |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
| Subtask 5.1 - Review of Existing Turbo-expander Technologies                                |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
| Subtask 5.2 - Sizing and Performance Estimate of Two Advanced Turbo-expanders               |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
| Subtask 5.3 - Turbo-expander Design with Recommendations for Materials, Bearings, and Seals |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
| Task 6.0 - Cost and Schedule of Significant Auxiliary Equipment                             |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
| Subtask 6.1 - Review and Definition of Significant Auxiliary Equipment                      |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
| Subtask 6.2 - Cost of Significant Auxiliary Equipment                                       |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         | i      |
| Subtask 6.3 - Schedule of Significant Auxiliary Equipment                                   |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
| Subtask 6.4 - Design, Cost, and Schedule Development of Coal Handling Equipment             |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
| Task 7.0 - Adaptation of Work Completed Under Previous Projects                             |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
| Subtask 7.1 - Commercial TEA Adaptation to Current Project                                  |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
| Subtask 7.2 - Review of Specifications, Quotes, and Layouts from Previous Work              |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
| Subtask 7.3 - Minimization of Capital Costs from Previous Work                              |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |
| Subtask 7.4 - Minimization of Capital Costs from Previous Work                              |        |          |         |        |         |        |        |         |        |         |        |          |        |          |         |        |





### Milestone Log

| Number | Budget<br>Period | Task/Sub-<br>task No. | Milestone<br>Description                                              | Planned<br>Completion | Actual<br>Completio<br>n | Verification<br>Method                 |
|--------|------------------|-----------------------|-----------------------------------------------------------------------|-----------------------|--------------------------|----------------------------------------|
| M1     | 1                | 1.0                   | Updated PMP,<br>DMP, TMP                                              | 04/30/2018            |                          | PMP, DMP, and TMP file                 |
| M2     | 1                | 1.0                   | Kickoff Meeting                                                       | 04/30/2018            |                          | Presentation file                      |
| M3     | 1                | 2.1                   | Selection of final host site                                          | 10/31/2018            |                          | Commitment<br>letter from host<br>site |
| M4     | 1                | 3.1                   | Completion of the Environmental Impact Volume                         | 01/31/2018            |                          | Phase I Topical<br>Report              |
| M5     | 1                | 7.0                   | Preliminary cost,<br>schedule, and<br>economic analysis               | 03/31/2019            |                          | Phase I Topical<br>Report              |
| M6     | 1                | 5.0                   | Advanced hot gas<br>turbo-expander<br>initial development<br>complete | 07/31/2019            |                          | Phase I Final<br>Report                |
| M7     | 1                | 6.0                   | Complete cost and schedule update of significant auxiliary equipment  | 07/31/2019            |                          | Phase I Final<br>Report                |





### Risk and Mitigation

| Description of Risk                                             | Probability (Low,<br>Moderate, High) | Impact (Low,<br>Moderate, High) | Risk Management (Mitigation and Response<br>Strategies)                                                             |
|-----------------------------------------------------------------|--------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Technical Risks:                                                |                                      |                                 |                                                                                                                     |
| Site selected back out of commitment                            | Moderate                             | High                            | Pursue secondary site based on the top three selected sites from previous work                                      |
| Turbo-expander cannot be designed to survive flue gases         | Low                                  | Moderate                        | Use commercially available turbo-expander at reduced temperature specified in previous work                         |
| Vendors unavailable for domestic sourcing of Combustor and OTSG | Moderate                             | High                            | Return to more costly international sources for exotic parts unavailable in the United States                       |
| Resource Risks:                                                 |                                      |                                 |                                                                                                                     |
| Personnel unavailable to complete tasks                         | Low                                  | Moderate                        | Develop contingency plan. Seek resources from other partner organizations that can meet the workload                |
| Management Risks:                                               |                                      |                                 |                                                                                                                     |
| Geographically separated groups do not coordinate efforts       | Moderate                             | High                            | Utilize regular meetings to coordinate efforts; use regular status reports to gauge results and document milestones |

- Miscommunication and duplication of work Regular meetings and reports
- **Overspending** Real time tracking with project management system, competitive quotes
- <u>Shortage of resources</u> SwRI has over two million square feet of lab space and over 3,000 employees





### **Projected Spending**







### Reporting and Deliverables

- Additional Reports
  - Final Site and Phase II Participant Commitment Letters (Subtask 2.3)
  - Phase I Topical Report (Task 2.0-7.0)
- Quarterly Reporting (within 30 days)
  - Research Performance Progress Report (RPPR)
  - SF-425 Federal Financial Report
- Final Scientific/Technical Report (within 90 days)
  - Final SF-425, Invention Certification (within 90 days)
  - Subject Invention Reporting, Invention Utilization Reporting
  - Final Property Report (SF-428, SF-428B)
- Reports within 5 days of event
  - Special Status
  - Journal Article-Accepted Manuscript
  - Scientific/Technical Conference Paper/Presentation or Proceedings





### Thank You



