

DOE Award No.: DE-FE0013961 Quarterly Research Performance Progress Report (Period Ending 03/31/2017)

Borehole Tool for the Comprehensive Characterization of Hydrate-Bearing Sediments

Project Period (10/1/2013 to 9/30/2017)

Submitted by: J. Carlos Santamarina

intamarina

Signature

Georgia Institute of Technology DUNS #: 097394084 505 10th Street Atlanta, GA 30332 Email: jcs@gatech.edu Phone number: (404) 894-7605

Prepared for: United States Department of Energy National Energy Technology Laboratory

Submission Date: 04/28/2017

Office of Fossil Energy

DISCLAIMER:

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Context - Goals.

The physical properties of hydrate bearing sediments are critical for gas production strategies, geo-hazard mitigation and its impact on gas recovery engineering. Typically, the determination of physical properties relies on correlations and experimental data recovered from conventional and pressure cores. Inherent sampling disturbance and testing difficulties add significant uncertainty. In this research, we develop a new comprehensive borehole tool for the characterization of hydrate bearing sediments, and an IT tool for the physics-bases selection of appropriate parameters.

Accomplishments

The main accomplishments for this period include:

• Finalized tool design based on field deployment experience and geometric constrains in order to be coupled with PCTB BHA

Plan - Next reporting period

- (1) Machining of the tool with new dimensions
- (2) Updated electronics design
- (3) Tool coupling with PCTB BHA

Research in Progress

Updated Tool Dimensions

<u>Geometric constrains</u>. Shallow depth cone-based site investigation typically uses a clump weight resting on the seafloor to anchor the drill string to avoid the residual heave from the drilling string. Previous two field deployment of this tool used a similar method. For deep depth tool deployment like IODP works, different mechanisms are used to avoid the residual heave problem. The borehole tool must be coupled with Collected Delivery system (CDS) or Mechanically Decoupled Hydraulic Delivery System (MDHDS) to be deployed in compatible with IODP tools. To be compatible with the PCTB BHA or the IDOP APC/XCB BHA, the maximum OD of the tool must be less than four inches, which is the OD of the current tool. Modifications of this tool have been made to meet this requirement.

Figure 1. New dimension of the tool body (left) and bottom cap (right). The top cap is to be determined based on CSD design.

Limited by the size the solenoid value, the maximum inner diameter of the tool body is 3.2 inches. Thus, the buckling stress for the body with this dimension is shown in Figure 2. All these dimensions will be finalized and machined in next reporting period.

Figure 2. Length dependent buckling stress of the tool body with modified ID and OD dimensions. The double lines show the upper and lower bounds based on the maximum and minimum elastic modulus of SS316 from various manufacturers, i.e., $E_{max} = 205$ GPa and $E_{min} = 190$ GPa.

<u>Electronics configuration</u>. Data measurement and collection systems have been updated as well after the field deployment. Further work will involve lab testing of each module and reconfiguration of installation within the modified tool body.

Figure 3. Latest version of electronics configuration (updated after field deployment). Left: joint connection of Raspberry Pi and Arduino Mega. Right: Arduino Mega with peripheral data amplifiers.

MILESTONE LOG

	Milestone	Completion Date	Comments
Title	Completion PMP		
Planned Date	November 2013	11/2013	
Verification method	Report		
Title	Insertion – Tool design		
Planned Date	September 2014	9/2014	
Verification method	Report		
Title	Database and IT tool		
Planned Date	September 2014	9/2014	
Verification method	Report		
Title	Electronics in operation		Finalizing electronics
Planned Date	January 2015	1/2015	and packaging method
Verification method	Report		based on field tests.
Title	Lab testing of prototype		Additional thannal
Planned Date	September 2015	6/2015	Additional therman
Verification method	Report		module development.
Title	Tool deployment		To be cant for me
Planned Date	Before September 2016	9/2016	abina abon work
Verification method	Report		chine shop work.

PRODUCTS

• Publications – Presentations:

- Yang, F. and Dai, S. (2017). Thermal properties measurements for hydrate-bearing sediments using single-sided heat source. 9th International Conference on Gas Hydrates, June 25-30, 2017, Denver, CO. (submitted)
- Dai, S., Santamarina, J. C. (2017). Stiffness Evolution in Frozen Sands Subjected to Stress Changes. *Journal of Geotechnical and Geoenvironmental Engineering*, 04017042.
- Dai, S., Shin, H., Santamarina, J. C. (2016). Formation and development of salt crusts on soil surfaces. *Acta Geotechnica*, 11(5), 1103-1109.
- Dai, S., Santamarina, J. C. (2014). Sampling disturbance in hydrate-bearing sediment pressure cores: NGHP-01 expedition, Krishna–Godavari Basin example. *Marine and Petroleum Geology*, 58, 178-186.
- Dai, S., Lee, J. Y., Santamarina, J. C. (2014). Hydrate nucleation in quiescent and dynamic conditions. *Fluid Phase Equilibria*, 378, 107-112.
- Website: Publications and key presentations are included in <u>http://egel.kaust.edu.sa/</u> (for academic purposes only)
- Technologies or techniques: None at this point.

- Inventions, patent applications, and/or licenses: None at this point.
- Other products:

Terzariol, M. (2015). Laboratory and field characterization of hydrate bearing sedimentsimplications. PhD Thesis, Georgia Institute of Technology.

PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

Research Team: The current team involves:

- Marco Terzariol (Post-Doc)
- Zhonghao Sun (PhD student)
- Fan Yang (MS student)
- Sheng Dai (Assistant Professor)
- Carlos Santamarina (Professor)

IMPACT

None at this point.

CHANGES/PROBLEMS:

None at this point.

SPECIAL REPORTING REQUIREMENTS:

We are progressing towards all goals for this project.

BUDGETARY INFORMATION:

As of the end of this research period, expenditures are summarized in the following table. Note that this project is within the 1st year NCE period; all personnel budget has been spent up to date and the left fund is only for borehole tool machining, electronics procurement, and CDS coupler design and machining.

		Budget I	Period 3					Budget P	eriod 4	
	ð	2	ď	~	0	4	Ø	1	ð	
Baseline Reporting Quarter DE-FE0013961	1/1/16-	3/31/16	4/1/16 - 6	5/30/16	7/1/16 -	9/30/16	10/1/16 -	12/31/16	1/1/17 - 3	3/31/17
	Q2	Cumulative Total	Q3	Cumulative Total	Q4	Cumulative Total	Q1	Cumulative Total	02	Cumulative Total
aseline Cost Plan										
ederal Share	30,000	375,515	30,000	405,515	71,510	477,025		477,025		477,025
Ion-Federal Share	14,692	111,795	14,693	126,488	•	126,488		126,488		126,488
otal Planned	44,692	487,310	44,693	532,003	71,510	603,513	•	603,513		603,513
Actual Incurred Cost										
ederal Share	28,411	279,020	51,392	330,412	56,613	387,025	(28,317)	358,708	12,855	371,563
Ion-Federal Share	10,436	104,196	5,218	109,415	2,744	112,158		112,158	5,488	117,646
otal Incurred Costs	38,848	383,216	56,611	439,826	59,357	499,183	(28,317)	470,866	18,343	489,209
/ariance										
ederal Share	-1,589	-96,495	21,392	-75,103	-14,897	-90,000	-28,317	-118,317	12,855	-105,462
Ion-Federal Share	-4,256	-7,599	-9,475	-17,073	2,744	-14,330	1,829	-14,330	5,488	-8,842
otal Variance	-5,844	-104,094	11,918	-92,177	-12,153	-104,330	-28,317	-132,647	18,343	-114,304

National Energy Technology Laboratory

626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940

3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880

13131 Dairy Ashford Road, Suite 225 Sugar Land, TX 77478

1450 Queen Avenue SW Albany, OR 97321-2198

Arctic Energy Office 420 L Street, Suite 305 Anchorage, AK 99501

Visit the NETL website at: www.netl.doe.gov

Customer Service Line: 1-800-553-7681

