# **Embedded Sensor Technology Suite for Wellbore Integrity Monitoring**

Dr. Paul R. Ohodnicki, Jr., NETL / DOE Lead PI; NETL co-PIs: Dr. Ruishu Wright, Dr. Jagannath Devkota, Dr. Ping Lu, Leidos Research Support Team; Dr. Jesus Delgado, Intelligent Optical Systems (IOS) PI; Prof. Aydin Babakhani, University of California, Los Angeles (UCLA) PI; Prof. Kevin Chen, University of Pittsburgh (U Pitt) PI; Dr. Scott Frailey, Illinois State Geological Survey (ISGS) PI; Prof. David Greve, Carnegie Mellon University (CMU) PI

Research & **Innovation Center** 



## **Project Overview**



## Distributed Fiber Optic Based Chemical Sensors

#### Chemical/pH Sensing Layers (NETL)

**Sensing Principle: Evanescent Wave Sensors** 



F-doped Silica Cladding



- → Eliminate Electrical Wiring and **Contacts at the Sensing Location**
- → Tailored to Parameters of Interest **Through Functional Materials**
- → Compatibility with Broadband and Distributed Interrogation

pH sensing materials: TEOS and Nano-Au incorporated-TEOS



## Organic pH Sensitive Coating Fabrication/Deployment (IOS)







-Accelerated curing process < 60s -Moderate curing temperature 100 °C or photocuring -Controlled pre-polymer viscosity for uniform coating distribution

In-line fiber recoating of long fiber optic sensors





## Passive, Wireless Surface Acoustic Wave (SAW) Sensors (NETL & CMU)

parameters (pH, corrosion onset, etc.)

> SAWs for Liquid Phase Application



**NETL's SAW Devices:**  $f_0 = 520 \text{ MHz}$ Substrate: 36 Y-X LiTaO3 IDTs: Al or Au

**Simulation and Experimental Results** req(51)=5.0051E8 Hz Surface: v\*cos(126\*pi/180)+w\*sin(126\*pi/180) (m) Surface: Pressure (Pa) Water

 $\succ$  SAW Attenuation ( $\alpha$ ) and Velocity (v):



Reflector (Au/Al) IDT (Au/Al) 36 Y-X LiTaO<sub>3</sub> **Delay Line** —— Air (Test Start) DI Water (pH 6.27) - pH 8.0 – pH 11.2 —— pH 6.0 — Air (Test End)

> Measure  $\Delta v$  in terms of time delay.

1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

Time (us)

## Passive, Wireless Silicon Integrated Circuit Sensors (UCLA)



## **Embedding of Sensors in Cement and** Casing Materials (NETL & U Pitt)

Thermal-curing setup

**Embed fibers in high temperature** metals, including curved parts.



**Defects** 

Normal













Mechanical testing of cement with sensors embedded





