

NATIONAL ENERGY TECHNOLOGY LABORATORY

Gasification Systems Program – Slide Library

Jenny B. Tennant Technology Manager - Gasification

Slide Library Table of Contents

Gasification 101

Program Slides

Energy Outlook

Active DOE Cooperative Agreements

NETL In-House R&D (ORD-RUA)

Congressionally Directed Projects

DOE Supported Gasification Demonstration Projects

Systems Analysis

- <u>Gasification Systems Program</u>
- Bituminous Baseline Study
- Bituminous IGCC Pathway Study
- Low Rank Coal Baseline Study: IGCC Cases
- Low Rank Coal IGCC Pathway Study

Conventional IGCC Compared to PC and NGCC

Commercial IGCC Plants

Worldwide Gasification Database

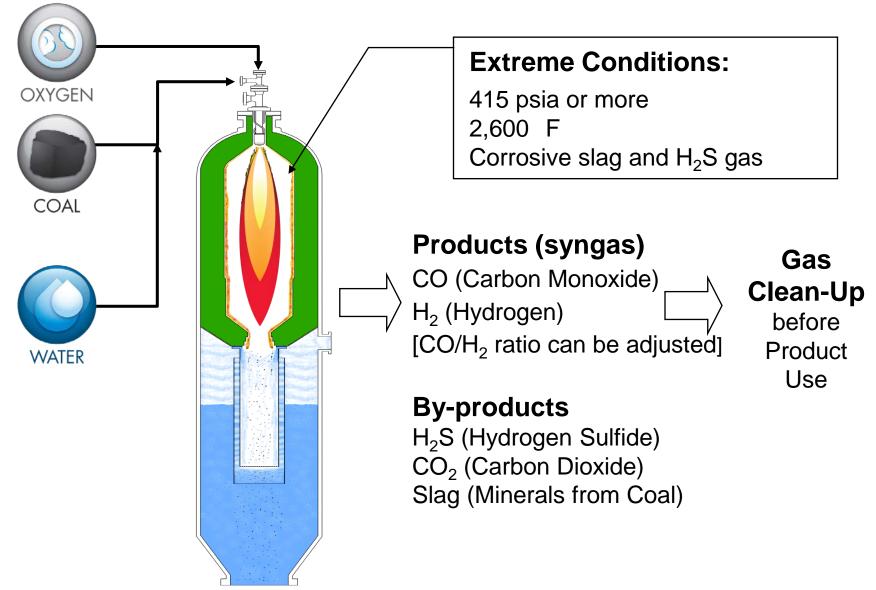
<u>Closing</u>

2

Gasification 101

3

What is Gasification?


Gasification converts any carbon-containing material into synthesis gas, composed primarily of carbon monoxide and hydrogen (referred to as syngas)

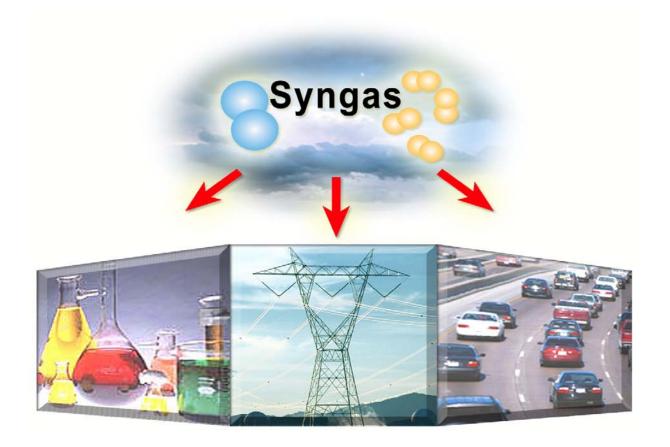
Syngas can be used as a fuel to generate electricity or steam, as a basic chemical building block for a large number of uses in the petrochemical and refining industries, and for the production of hydrogen

Gasification adds value to low- or negative-value feedstocks by converting them to marketable fuels and products

The Gasifier

Gasification – Differences from Combustion

Add water and high pressure


Use less air or oxygen

Gasification exit gases are at high pressure, so smaller volume, smaller reactors

Combustion makes heat + CO_2 + H_2O

Gasification makes less heat + carbon monoxide + hydrogen (CO + H_2); called Syngas

So what can you do with CO and H₂?

Building Blocks for Chemical Industry Clean Electricity Transportation Fuels (Hydrogen)

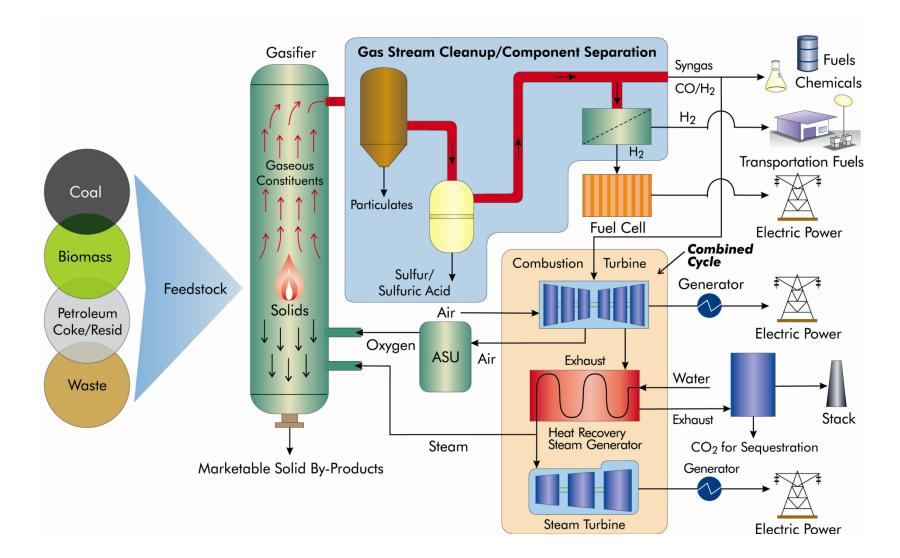
NATIONAL ENERGY TECHNOLOGY LABORATORY

Water-Gas-Shift (WGS) Reaction

Dry syngas is ~ 40% CO + 50% H_2

– For each CO molecule the WGS reaction creates one H_2 molecule and one CO_2 molecule

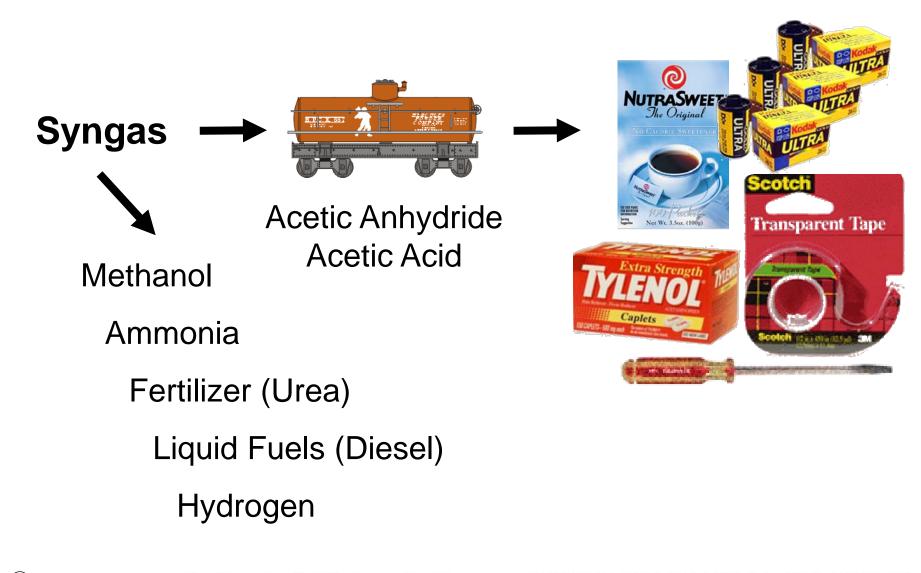
$CO + H_2O + catalyst \longrightarrow CO_2 + H_2$


After the WGS reaction, the CO_2 and H_2 can be separated

High pressure CO₂ results in lower cost sequestration

Hydrogen can be burned to make power

$$2H_2 + O_2 \longrightarrow 2H_2O$$


Overview of Energy Systems Options

9

NATIONAL ENERGY TECHNOLOGY LABORATORY

Chemicals and Products from Gasification

Benefits of Gasification

Feedstock flexibility

- Wide range of coals, petcoke, liquids, wastes, biomass can be utilized
- **Product flexibility**
 - Syngas can be converted to high valued products: electricity, steam, hydrogen, liquid transportation fuels, SNG, chemicals
- **Environmental superiority**
 - Pollutants can be economically controlled to extremely low levels (SO₂, NO_X, CO, Hg, etc.)
 - Reduced water consumption
 - Potential solid wastes can be utilized or easily managed
 - High efficiency / low CO₂ production
 - CO₂ can be easily captured for sale or geologic storage (sequestration)

Program Slides

(12)

Why the Interest in Coal Gasification?

Continuing fuel price fluctuation – natural gas and transportation fuels

Energy security – the U.S. has a lot of coal

Gasification can be used to make hydrogen (H_2) , synthetic natural gas (SNG), fertilizer, chemicals and transportation fuels from coal

Can be the lowest cost option to make power with carbon dioxide (CO_2) capture and storage

Excellent environmental performance for power generation

Gasification Systems Program Goal

The goal of the Gasification Systems Program is to reduce the cost of electricity, while increasing power plant availability and efficiency, and maintaining the highest environmental standards

"Federal support of scientific R&D is critical to our economic competitiveness"

> Dr. Steven Chu, Secretary of Energy November 2010

Gasification Systems Program

Focus to reduce the cost of gasification, while increasing plant availability and efficiency, and maintaining the highest environmental standards

FE Program Target: IGCC with CSS that has less than 10% increase in COE and 90% capture

Increasing focus on low rank coal (LRC) gasification

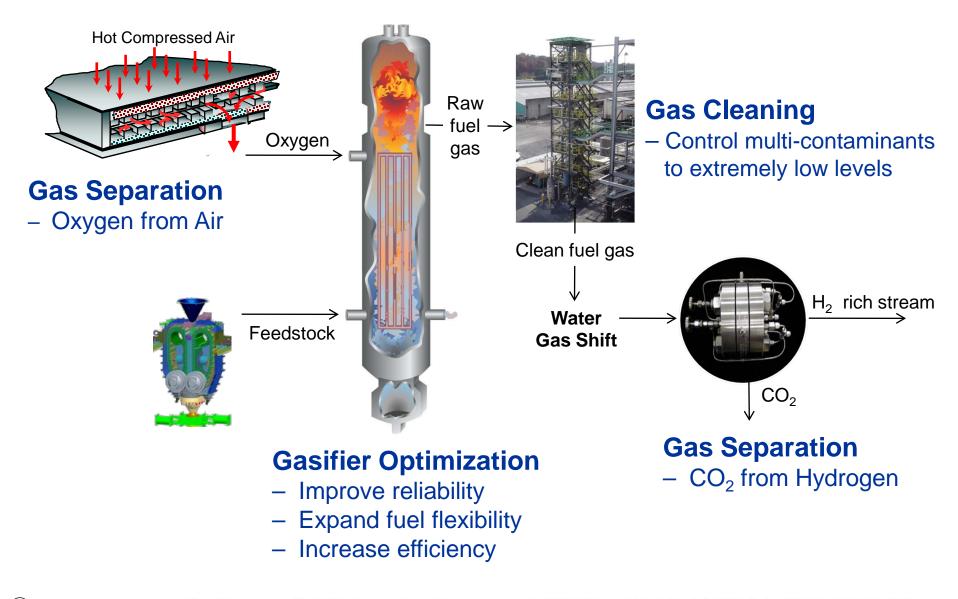
- EIA forecasts significant growth in western coal production; low rank western coal cost per Btu will stay at about half that of eastern coal
- Industry interest in cost-sharing LRC R&D
- Potential for economic boost to U.S. regions with LRC reserves

Gasification Systems Program

Key Research Areas

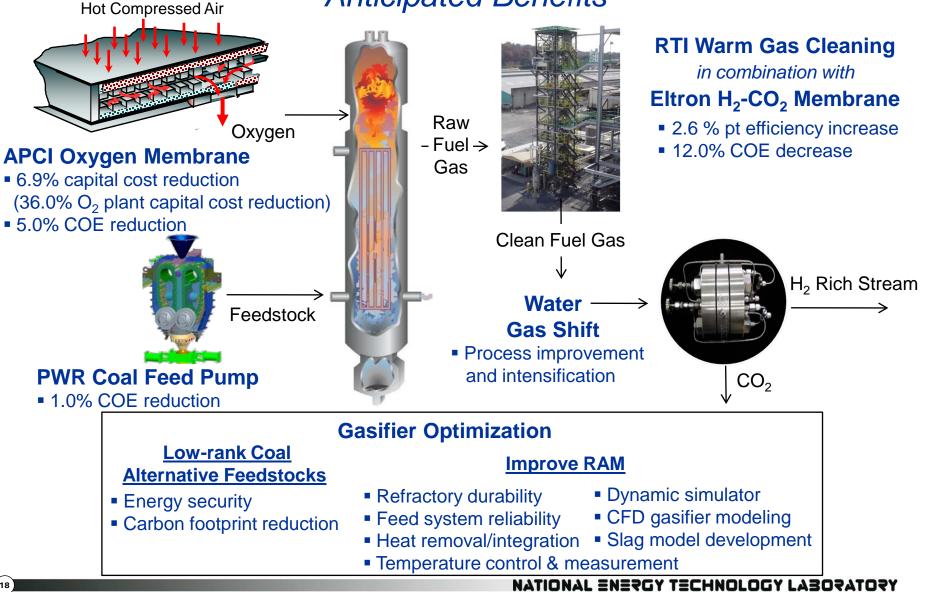
Gasifier Optimization

- Improve reliability
- Expand fuel flexibility
- Increase efficiency

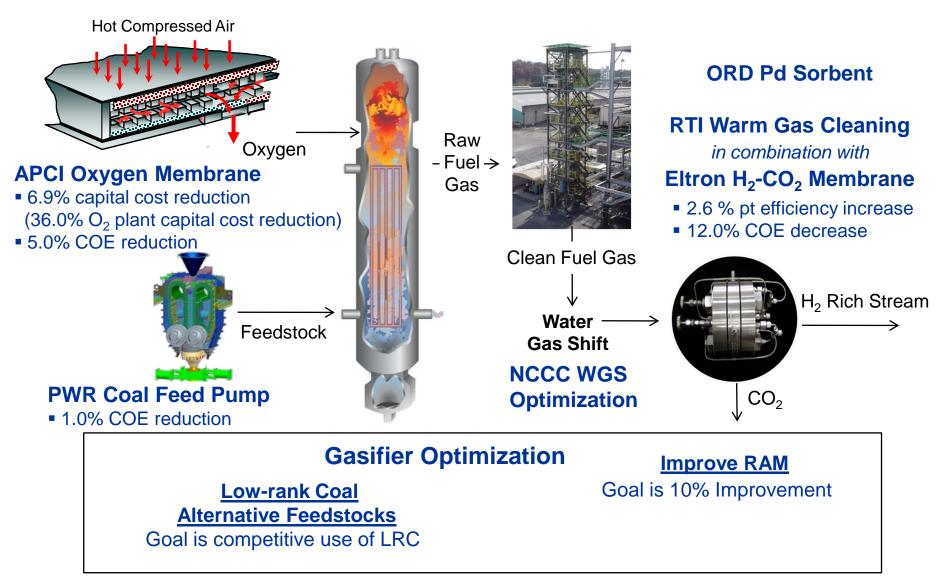

Gas Cleanup

- Control multi-contaminants to extremely low levels

Gas Separation


- Oxygen separation
- Hydrogen and carbon dioxide separation

Key Gasification Systems R&D Areas



Gasification Systems Projects

Anticipated Benefits

Gasification Systems Project Benefits

Low Rank Coal Program Pathway Why It's the Right Time

Gasification industry interviews show interest in low rank coal

- Most projects are cost shared with industry
- Industry use is objective of Gasification Program R&D

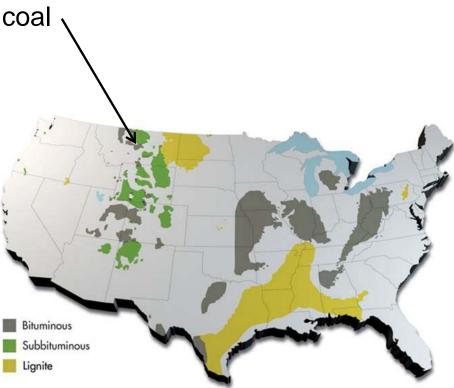
Low rank coals present unique challenges *and* opportunities for gasification and IGCC

- High inherent moisture, high in alkali metals (Na, K, Ca)
- High oxygen content, high reactivity, low sulfur and Low Cost

NETL systems analysis has shown low rank coal gasification has the potential to be economically competitive

- Altitude vs Shipping
- Limited gasifier types

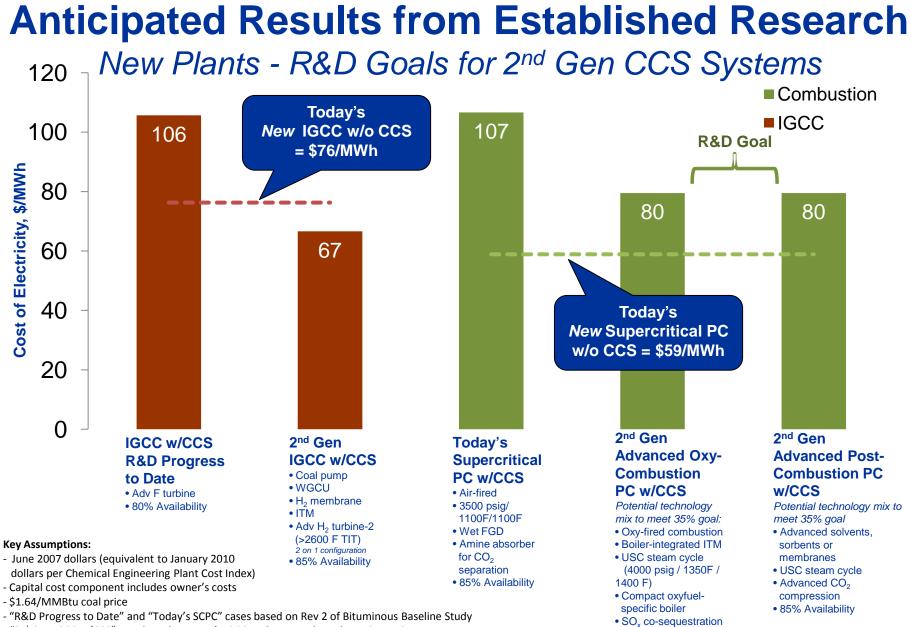
About half of world, and U.S., coal reserves are low rank -- a global market opportunity for advanced IGCC technology



U.S. Low Rank Coal Resources and Prices

Low rank: lignite and sub-bituminous coal

- About 50% of the U.S. coal reserves
- Nearly 50% of U.S. coal production
- Lower sulfur


Year	Lignite Price (\$/ST)	PRB Price (\$/ST)	Bitum. Price (\$/ST)
2010	16.77	13.93	53.40
2011	16.41	13.15	51.87
2015	16.67	13.00	48.70
2020	17.31	13.92	48.23
2025	17.83	15.31	49.03

EIA forecasts significant growth in western coal production; declining eastern coal production

Low rank western coal cost per Btu will stay at about half that of eastern coal

- "2nd Gen IGCC w/CCS" case based on NETL's IGCC Pathway study, Volume 2, Rev 2 DRAFT

22

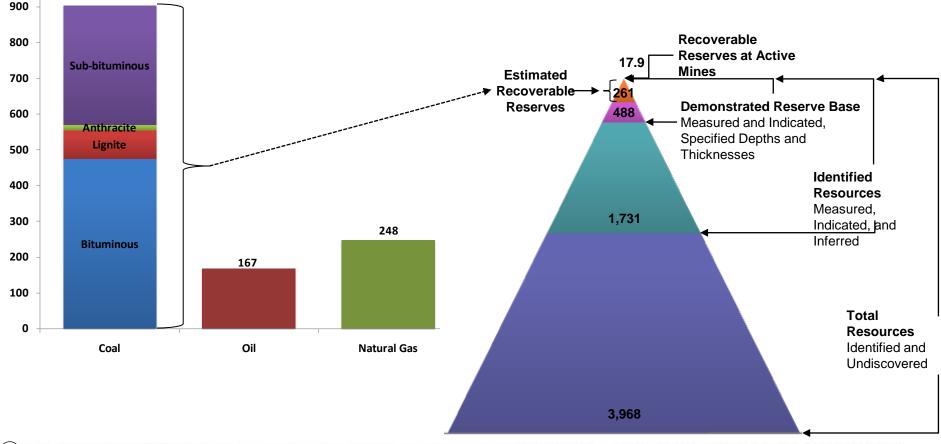
NATIONAL ENERGY TECHNOLOGY LABORATORY

• 85% Availability

TIT = turbine inlet temperature WGCU = warm gas cleanup ITM = ion transport membrane USC = Ultra supercritical FGD = Flu Gas Desulfurization

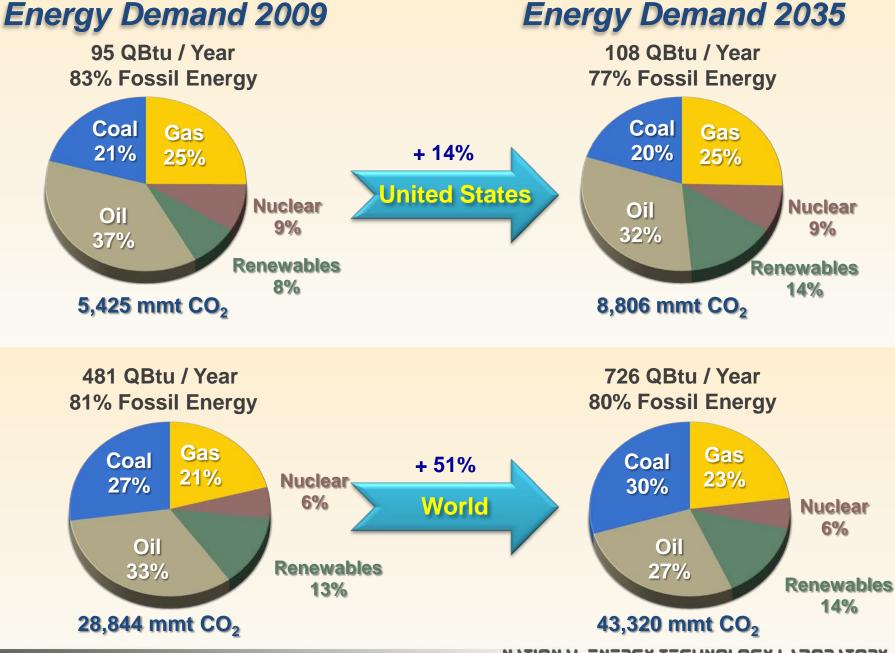
Energy Outlook

23


U.S. Fossil Fuel Resources

U.S. Fossil Fuel Reserves and Resources

barrels of oil equivalent


U.S. Coal Resources

billion short tons

NATIONAL ENERGY TECHNOLOGY LABORATORY

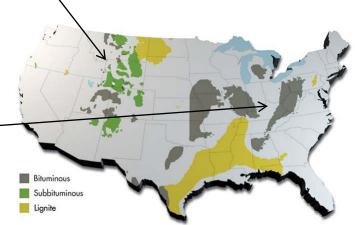
Sources: Chart - Whitney, Gene et al., U.S. Fossil Fuel Resources: Terminology, Reporting, and Summary, Congressional Research Service, October 2009 p14 Pyramid figure - U.S. Energy Information Administration, Form EIA-7A, Coal Production Report, February 2009

Sources: U.S. data from EIA, Annual Energy Outlook 2012er: World data from IEA, World Energy Outlook 2011

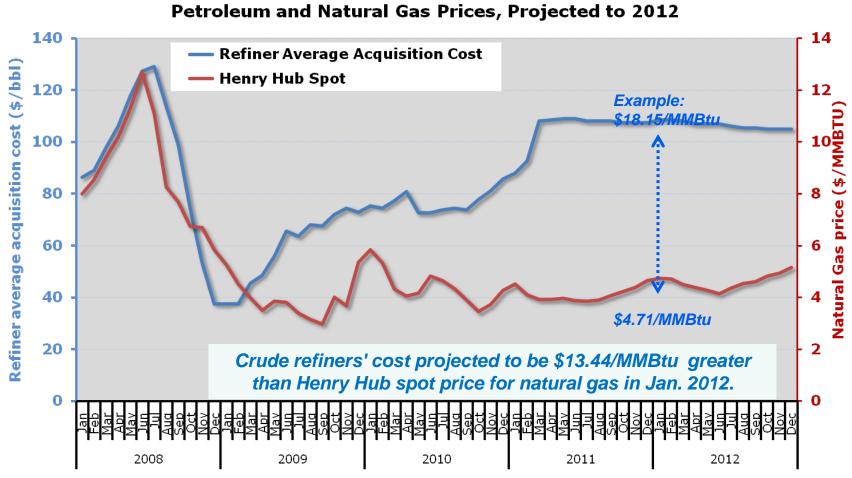
NATIONAL ENERGY TECHNOLOGY LABORATORY

U.S. Coal Resources

Low rank: lignite and sub-bituminous coal

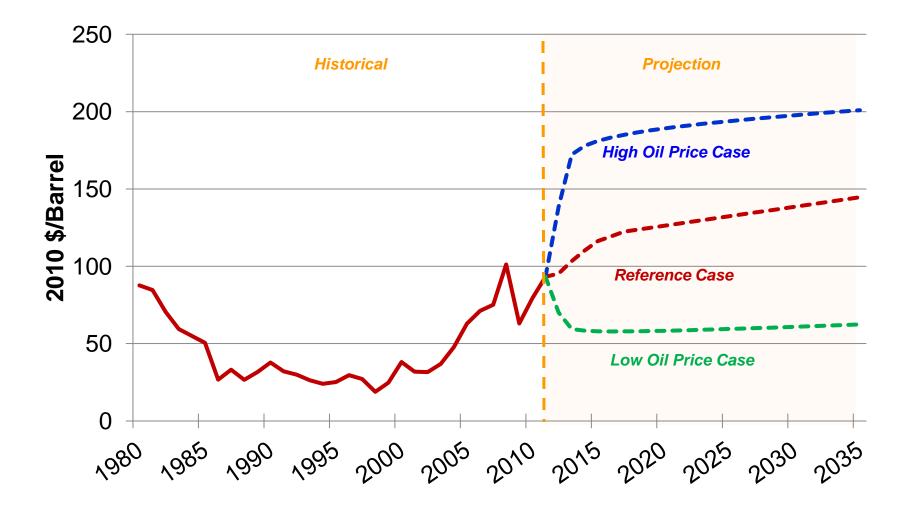

- About 50% of the U.S. coal reserves
- Nearly 50% of U.S. coal production
- Lower sulfur

Bituminous coal

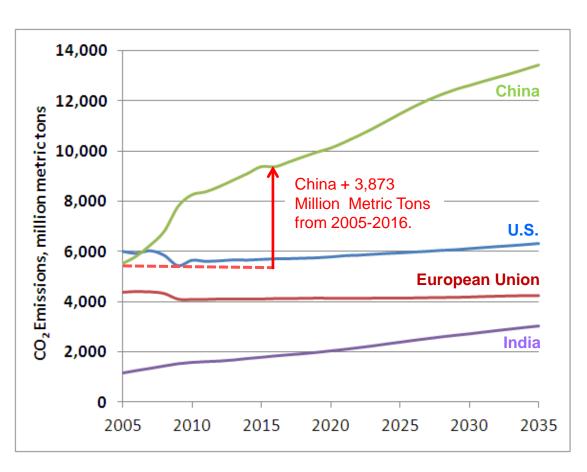

- About 50% of the U.S. coal reserves
- Higher heating value
- Lower moisture and mineral content

EIA forecasts significant growth in western coal production; declining eastern coal production

Low rank western coal cost per Btu will stay at about half that of eastern coal



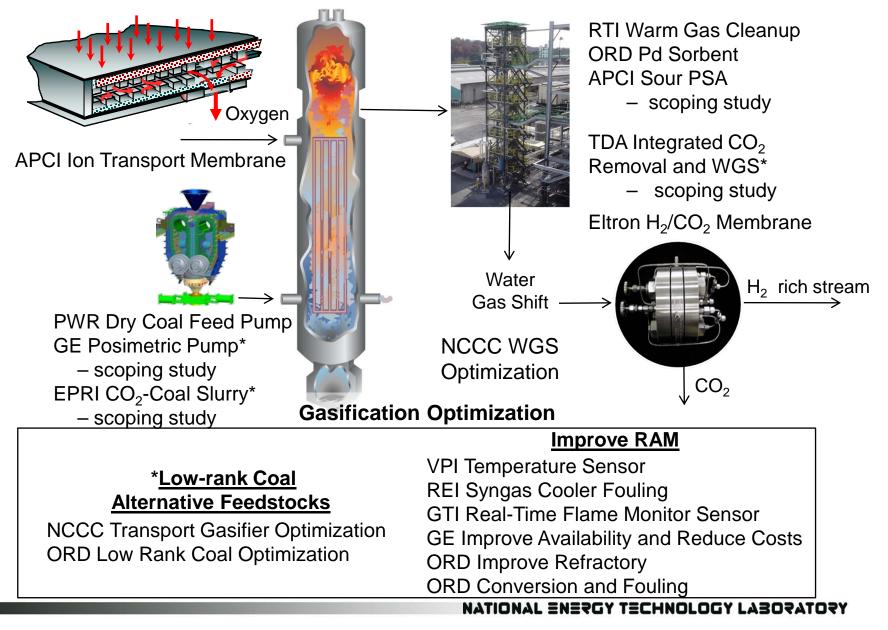
Oil and Gas Price Comparison


Source: EIA's Short Term Energy Outlook, Table 2

Average World Oil Price Projections

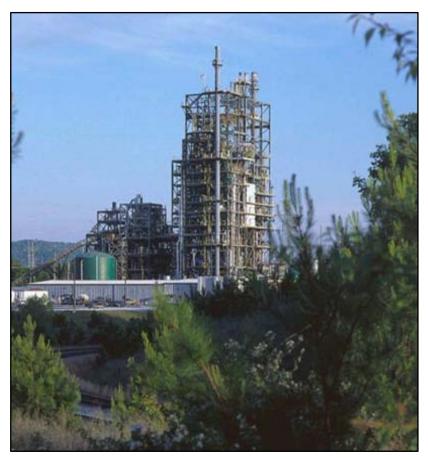
28

Carbon Capture is a Global Issue


- The European Union are anticipated to maintain level of CO₂ release through 2035; 2020 for U.S.
- China and India CO₂ emissions will substantially increase into 2035
- By 2020, China's CO₂ emissions will eclipse U.S. and the European Union, combined
- By 2015, China aims to cut CO₂ emissions per unit economic growth by 16 percent of 2011 levels

Active DOE Cooperative Agreements

30



Gasification Systems Program Projects

(31

National Carbon Capture Center at the Power Systems Development Facility (PSDF) Southern Company Services

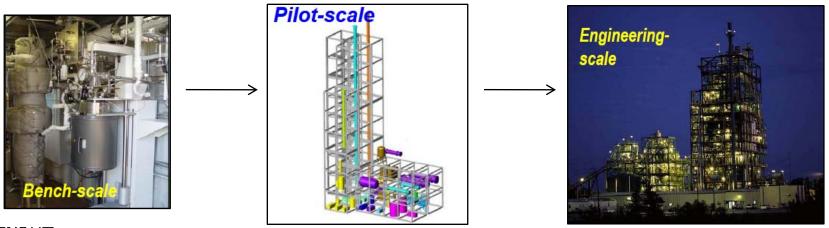
Location: Wilsonville, AL

Subcontractors

- American Electric Power
- Arch Coal
- Electric Power Research Institute
- Luminant
- NRG
- Peabody Energy
- Rio Tinto

Development and commercial scale-up of modular industrial scale gasificationbased processes and components

National Carbon Capture Center


Southern Company Services

Goal: Accelerate path to cost-effective CO_2 capture technology for all 3 major areas of CO_2 Capture; post combustion, pre-combustion, oxy-combustion

Technology: Flexible testing facilities for scale-up from bench to engineering-scale

Project tasks

Modifications underway to enhance and enlarge pre-combustion CO_2 capture testing infrastructure to enable testing of membranes, sorbents and solvents

ESCA LECHNOLOCA LYBO

National Carbon Capture Center (NCCC)

Advanced Gasification and H₂ Separation

Fuel flexibility, filter materials, sensor development - 1000 hour gasification test using PRB coal

- Evaluated new gasifier temperature control scheme
- Continued long-term evaluation of hot gas filter elements
- Conducted sensor development involving sapphire thermowell for gasifier service, coal-flow measurement device, and vibration type level detector
- 996 hour test of PRB sub-bituminous coal completed through Dec. 2011

Carbon capture - Modifications continue to enhance and enlarge pre-combustion CO_2 capture testing infrastructure to enable testing of membranes, sorbents, and solvents. Conducted evaluations of:

- Hydrogen and CO₂ membranes
- High-temperature palladium-based mercury sorbent
- CO₂ capture testing with new solvents
- Water-gas shift catalyst performance

Power Systems Development Facility (PSDF)

Project History - Accomplishments

- History Established by DOE in early '90s
- To accelerate development of more efficient advanced coal-based power plant technologies
- Research centered around high-temperature, high-pressure filtration
- Signed over 115 non-disclosure agreements (NDA)s with developers to support advancement of their technologies
- Air-blown Transport Gasifier commenced operation in 1999

Accomplishments - Results through December 31, 2011 include:

- 28 major gasification test campaigns
- 16,000 hours of gasification operation
- Successful engineering scale demonstration of advanced power systems technologies, including:

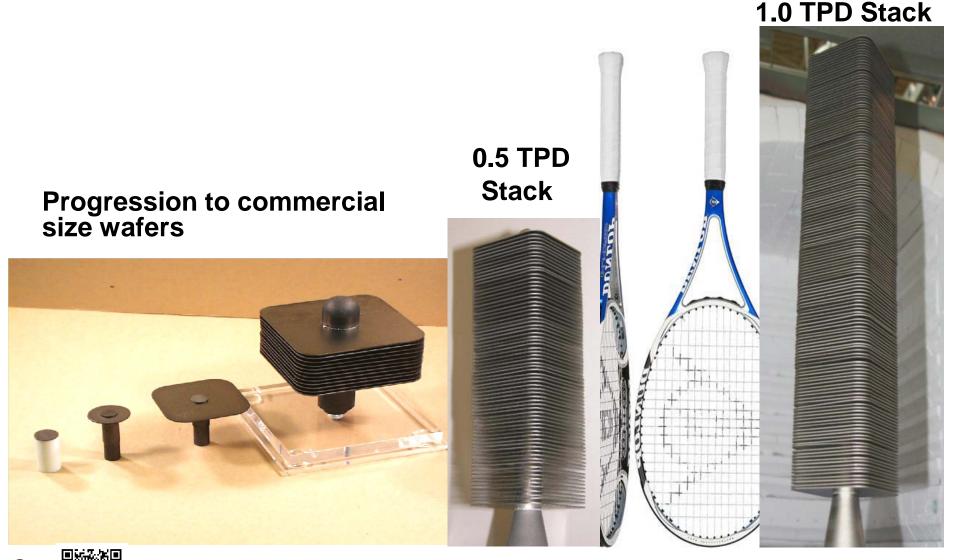
Hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems

- Developed gasifier suitable for low-rank fuels use
- Extensive successful operation on a variety of coals including: subbituminous, bituminous, and lignite
- TRIG[™] technology being used in CCPI demonstration, Kemper County

Ion Transport Membrane (ITM) Air Products and Chemicals, Inc. (APCI)

Goal: Low cost oxygen production

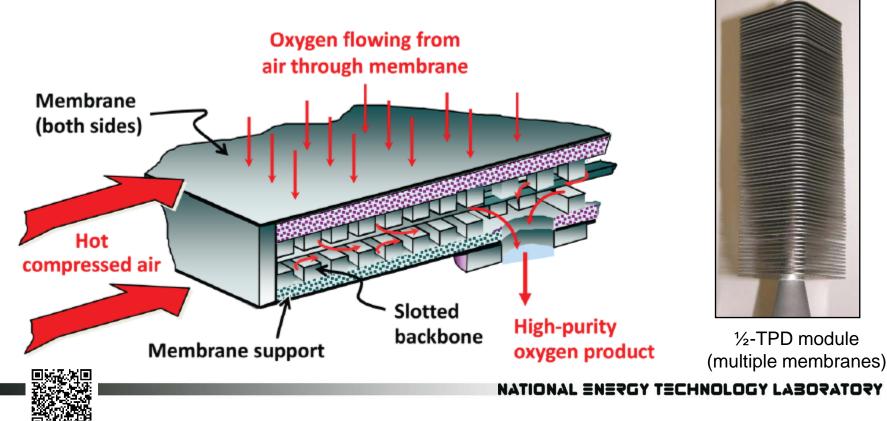
Technology: O₂ separation from air utilizing peroskovite ceramic membrane technology


Project tasks (planned completion date 9/30/2015)

- Perform module testing utilizing the 5 TPD Test System to evaluate lifetime performance against target values, and obtain membrane module performance data (complete)
- Construct ~100 TPD pilot system to demonstrate integrated operability and performance of ITM system, (construction continuing)
- Construct and start-up the ceramic wafer and module manufacturing [commercial scale] facility (equipment orders placed)
- Conduct process modeling and conceptual design of 2,000 TPD ITM oxygen production plant

Ion Transport Membrane (ITM)

Development of ITM Oxygen Technology



© Air Products and Chemicals, Inc. 2010. All Rights Reserved

Ion Transport Membrane (ITM) Air Products and Chemicals, Inc. (APCI)

Ion Transport Membrane (ITM)

- Supported thin-film, ceramic planar devices
- Fast, solid state electrochemical transport of oxygen
- Pressure-driven; compact
- All the layers are composed of the same ceramic material

Membrane Air Separation Advantages Cryo-ASU vs. ITM in IGCC

IGCC Efficiency	Cryo-ASU	ITM with F-Class GT	ITM with G-Class GT	
No CCS	BASE	0.8%	2.9%	
With CCS	BASE	0.3%	2.2%	

Oxygen Plant Cost	Cryo-ASU	ITM with F-Class GT	ITM with G-Class GT
No CCS	BASE	-24.9%	-34.8%
With CCS	BASE	-24.5%	-36.3%

Better Economics	Levelized Cost of Electricity	Cryo-ASU	ITM with F-Class GT	ITM with G-Class GT
	No CCS	BASE	-1.6%	-5.0%
	With CCS	BASE	-2.1%	-4.9%

G-Class cases include full air-side integration of advanced gas turbine and oxygen plant

NATIONAL ENERGY TECHNOLOGY LABORATORY

High Pressure Solids Pump

Pratt & Whitney Rocketdyne

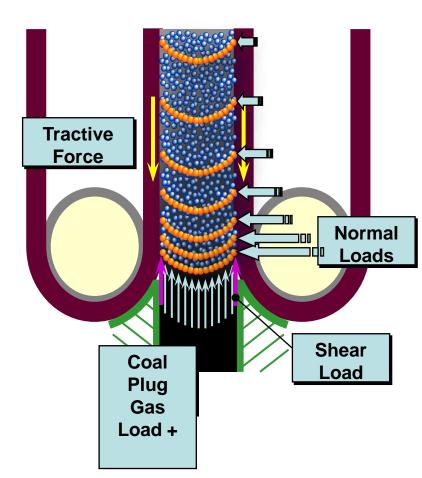
Goal: Reliable and consistent dry feed for high pressure IGCC leading to lower cost

Technology: Bulk solids form multiple stable "bridges" between parallel moving walls to feed dry solids across 1,000+ psi pressure gradient

Project tasks (planned completion date 12/31/2012)

- Complete performance and durability tests
- Perform pump cost benefit analysis

High Pressure Solids Pump


Pratt & Whitney Rocketdyne

Pump operation relies on ability of bulk solids to form multiple stable "bridges" or arch between parallel wall structure, bridges can support very large loads

Increasing load is transferred to sidewalls, making the bridge more stable, further increasing load will ultimately fail the sidewall

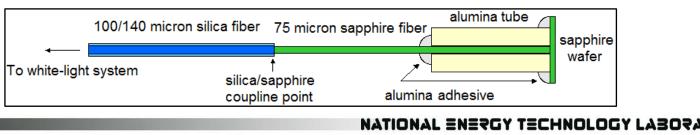
Extrusion or "pumping" occurs when sidewalls are moved mechanically and material is released by separating the walls

In "lock-up" there is no "slip" or relative motion between material and moving walls, device exhibits "positive displacement" with a volumetric displacement of unity

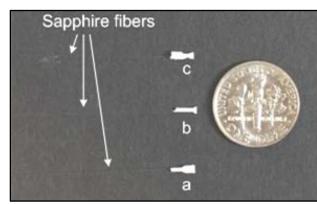
Single Point Sapphire Temperature Sensor

Virginia Polytechnic Institute

A temperature measurement system based using a sapphire optical sensor that is accurate and reliable for use in the extreme harsh


environment of a coal gasifier

Accomplishments


- Accurate readings up to 1600 °C
- Full-scale testing at TECO
- 7 months of operation

Future Work

- Validate sensor design for flexible but robust packaging for in situ gasifier monitoring
- Complete bench scale testing sensor probe for combustion turbine monitoring

Real-Time Flame Monitoring Sensor Gas Technology Institute

Description

 Develop a reliable, practical, and costeffective means of monitoring coal gasifier conditions (flame characteristics, slag, temperature) using an optical flame sensor

Igniter Burner port port plane Image refocus assembly Imaging spectrometer

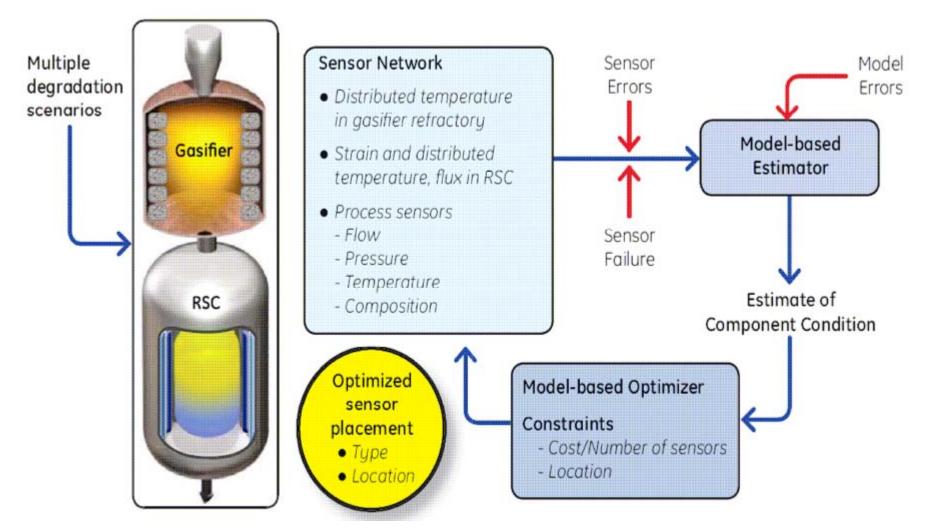
UV lens

Accomplishments

- Modified sensor to detect UV, visible, and/or near IR wavelengths
- Successfully completed lab-scale testing with natural gas flames
- Successfully tested the sensor on a natural gas mockup of an oxygen-fired, high pressure pilot-scale slagging gasifier
- Performed successful tests at Wabash River IGCC and Pratt & Whitney Rocketdyne pilot gasifier

Future Work

 Initiate full scale testing at Wabash River gasifier to demonstrate long term operation and ability to measure temperature.



Model Based Optimal Sensor Network Design General Electric Global Research

- **Goal**: Develop an advanced model-based optimal sensor network to monitor the condition of the gasification section in an IGCC plant, focusing on gasifier refractory degradation and radiant syngas cooler fouling
- **Technology:** Combination of model-based nonlinear estimation and optimization software
- **Project tasks** (planned completion date 12/31/2012)
 - Develop systematic model-based computational approach for optimal sensor placement
 - Computer simulation demonstration on gasifier and radiant syngas cooler

Model Based Optimal Sensor Network Design General Electric Global Research

Schematic of online monitoring integration with predictive controls model

NATIONAL ENERGY TECHNOLOGY LABORATORY

Warm Gas Cleanup

Research Triangle Institute (RTI)

Goal: Higher efficiency, ultra clean syngas cleanup

Technology: Highly reactive sorbent in integrated transport reactor system

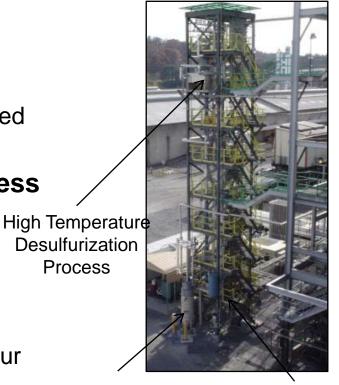
Project tasks (planned completion date 9/30/2015)

- Design and construct a 50 MWe prototype system (FEED completed)
- Operate at commercial conditions
- Optimize water gas shift
- Capture 90% carbon in syngas, up to 300,000 TPY CO₂, via integration of water-gas shift (WGS) and aMDEA into process
- Perform CO₂ sequestration with monitoring and verification

Warm Gas Cleanup – RTI

Previous Testing at Eastman Chemical

RTI Warm Gas Cleanup Technologies


 Cleans multi-contaminants from coal-derived syngas while creating pure sulfur product

High Temperature Desulfurization Process

- > 99.9 % removal of both H₂S and COS (to < 5 ppmv levels)
- > 3,000 hours of operation at 0.3 MWe

Direct Sulfur Recovery Process

- > 99.8 % SO₂ conversion to elemental sulfur
- 96 % ammonia removal
- 90 % mercury and arsenic removal

Direct Sulfur Recovery Process

Process

Multi-contaminant Control Test System

Pilot Plant Operation at Eastman's Gasification Facility, Kingsport, TN

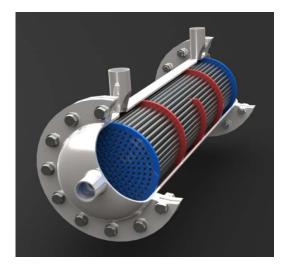
AL ENERGY TECHNOLOGY LABORATORY

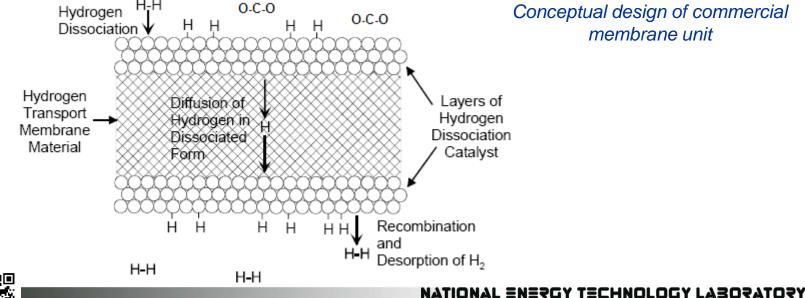
Hydrogen Transport Membrane (HTM) Eltron Research, Inc.

Goal: Lower cost H₂ separation and CO₂ capture for IGCC

Technology: Dense metal membrane to separate H_2 from shifted syngas, leaving CO_2 at high pressure

Project tasks (planned completion date 9/30/2015)


- Complete testing of lab- and bench-scale units at Eltron (ongoing)
- Complete testing of 5-12 lb/day H₂ production unit using real coal-derived synthesis gas (ongoing)
- Design, construct, and evaluate performance of nominally 250 lb/day prototype development unit
- Design, construct and test a nominally 4-10 TPD pre-commercial module


Hydrogen Transport Membrane (HTM) Eltron Research, Inc.

Hydrogen Transport Membrane

- High CO₂ retentate pressure
- Allows capture of high pressure CO_2
- High hydrogen recoveries >90%
- Essentially 100% pure hydrogen
- Low cost, long membrane life

Conceptual design of commercial membrane unit

Eltron Research & Development Tech Brief http://www.eltronresearch.com/docs/Hydrogen_Membrane_Technology_Summary.pdf

Low Rank Coal R&D

Recently Awarded Projects

Liquid CO₂ Slurry for Feeding Low Rank Coal (LRC) Gasifiers (Electric Power Research Institute, Inc.)

- Measurements of rheological properties including viscosity and solids loading with three low rank coals for both LCO₂ and water slurries
- Preliminary design and cost estimate of mixing system

Advanced CO₂ Capture Technology for LRC IGCC Systems (TDA Research)

Demonstrate technical/economic potential for integrated CO₂ scrubber/water gas shift (WGS) catalyst by:

- Optimizing sorbent/catalyst and process design
- Assessing integrated system in bench-scale & slipstream field demonstration

Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of LRC in IGCC Technologies (GE)

- Completing techno-economic studies of IGCC - with and without dry feeder

Sour PSA for Separation of CO₂,Sulfur, and Impurities from LRC (Air Products and Chemicals, Inc.)

- Extensive testing in PSA and TSA modes
- Using experimental results to generate a high-level pilot process design
- Techno-economic assessment of applicability for low-rank coal use

NATIONAL ENERGY TECHNOLOGY LABORATORY

CO₂ Slurry Feed

Electric Power Research Institute, Inc. (EPRI)

Liquid CO₂ Slurry for Feeding Low Rank Coal (LRC) Gasifiers

Study potential advantages of CO₂ slurries of low-rank coal by:

- Conducting plant-wide technical and economic simulations
- Developing a preliminary design and cost estimate of a slurry preparation and mixing system
- Performing laboratory tests of rheological properties of liquid CO₂/LRC slurry and maximum solids loading capability for 3 coals

Project Duration: 12 months

- Electric Power Research Institute
- Dooher Institute of Physics and Energy
- Worley Parsons Group, Inc.
- Columbia University

Integrated CO₂ Scrubber and Water Gas Shift TDA Research, Inc

Advanced CO₂ Capture Technology for Low Rank Coal IGCC Systems

Demonstrate technical and economic potential for an integrated

- CO₂ scrubber/ water gas shift catalyst by:
- Optimizing sorbent/catalyst and process design
- Assessing integrated system, in bench-scale & slipstream field demonstration using actual coal-derived synthesis gas
- Use results to feed a techno-economic analysis

Project Duration: 12 months

- TDA Research, Inc.
- University of California at Irvine
- Southern Company
- ConocoPhillips

Benefits of Dry Feed System

General Electric Company

Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low Rank Coal in IGCC Technologies

Evaluate and demonstrate the benefits of novel dry-feed technologies to effectively, reliably, and economically feed low-rank coal into commercial IGCC systems by:

 Completing comparative techno-economic studies of two IGCC power plant cases, (with and without advanced dry feed technologies)

Project Duration: 12 months

- General Electric Company
- Eastman Chemical Company

Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

Air Products and Chemicals, Inc. (APCI)

Sour Pressure Swing Adsorption (PSA) for Separation of CO₂, Sulfur, and Impurities from Low Rank Coals

Objective:

- Test performance of APCI Sour PSA on syngas produced from gasification low rank coals
- Achieve resulting cost reduction of >10% in capital scope at 90% CO₂ capture and >95% CO₂ purity
- Determine the ability of adsorbents in handling impurities resulting from the gasification of low rank coals

Scope of Work:

- Extensive testing in PSA and temperature swing adsorption (TSA) modes
- Using experimental results to generate a high-level pilot process design
- Preparing techno-economic assessment of applicability for low-rank coal use

Project Team:

- Air Products and Chemicals, Inc. (APCI)
- University of North Dakota Energy and Environmental Research Center (EERC)

Reliability, Availability & Maintainability R&D Recently Awarded Projects

Mitigation of Syngas Cooler Plugging and Fouling (Reaction Engineering International)

- <u>Experimental Testing</u>: Deposit bond strength and characterization
- <u>Modeling</u>: Investigate deposit behavior in the syngas cooler section, evaluate process conditions and equipment designs for mitigation of syngas cooler plugging and fouling
- <u>Field Test</u>: Validate specific means to implement mitigation methods

Feasibility Studies to Improve Plant Availability and Reduce Total Installed Cost in IGCC Plants (GE)

Work on tasks, with broad applicability to the IGCC industry

- Integrated operations philosophy
- Modularization of gasification/IGCC plant
- Active fouling removal
- Improved slag handling

Mitigation of Syngas Cooler Plugging & Fouling

Reaction Engineering International

Objective:

- Improve the availability of IGCC plants through improving the performance of the Syngas Cooler (SC) through reduced plugging and fouling by:
 - Gaining a better understanding of ash deposition onto refractory and metal surfaces associated with SC
 - Evaluating fouling and plugging of SC designs
 - Evaluate and develop methods to mitigate SC fouling and plugging
 - Validate defined SC mitigation technology through field tests

Scope Of Work:

- *Experimental Testing* deposit bond strength and characterization
- <u>Modeling</u> investigate deposit behavior in the SC section, evaluate process conditions and equipment designs for mitigation of SC plugging/fouling
- *Field Test* Validate specific means to implement mitigation methods

- Reaction Engineering International, Salt Lake City
- University of Utah, Salt Lake City

IGCC Affordability and Availability General Electric Company

Feasibility Studies to Improve Plant Availability and Reduce Total Installed Cost in IGCC Plants

Objective: Work on tasks, with broad applicability to the IGCC industry

- Integrated operations philosophy
- Modularization of gasification/IGCC plant
- Active fouling removal
- Improved slag handling

Project Duration: 36 months

- General Electric Company
- Eastman Chemical Company

NETL In-House R&D (ORD-RUA)

58

NETL Office of Research & Development *Gasification Projects*

Refractory Improvement

- Develop improved performance refractory liners that are carbon feedstock flexible (coal, western coal, petcoke)
- Model gasifier slag for refractory interactions, downstream phases and material interactions (syngas coolers)
- Manage slag viscosity and refractory wear, evaluate additives

Conversion and Fouling

- In slagging gasifiers using coal, petcoke or mixtures of them to:
 - Improve the carbon conversion efficiency to syngas
 - Reduce convective syngas cooler fouling
- Collaborate with industry to ensure proper technology development and transfer

NETL Office of Research & Development *Gasification Projects*

Low-Rank Coal Optimization

- Pretreatment and kinetic co-feed experimental efforts to support and validate the development of a hierarchy of device scale gasifier models with uncertainty quantification (UQ).
- Demonstrate the models with UQ for the NCCC/TRIG under co-feed conditions and optimize co-feed performance.

Warm Syngas Cleanup

 Conduct both lab and pilot-scale R&D for cost efficient sorbents for trace contaminant capture of high efficiency coal gasification plant

Advanced Virtual Energy Simulation Training And Research (AVESTAR[™]) Center

- Training Center: 3D virtual simulation of IGCC plant
- Establish the world-class center for addressing key operational and control challenges arising in IGCC plants with carbon capture.

Refractory Improvement NETL Office of Research and Development

Refractory Development for Mixed Feedstock Use

- Determine mechanisms of wear in NETL refractory materials under development.
- Determine refractory corrosion mechanisms in current generation commercial refractory liner materials exposed to coal slag, important for understanding how to overcome limitations in current refractory liner materials.

Slag Management (Current Emphasis)

 Determine critical information needed for slag management in gasifiers, which will be tracked in commercial gasifiers and predicted in models to increase gasifier RAM.

Advanced Refractory For Gasifiers

Rotary Slag Test

Conventional refractory after rotary slag testing

New refractory chemistry – Increases mechanical durability – Reduces slag penetration

Phosphate modified high-chrome oxide refractory material

NATIONAL ENERGY TECHNOLOGY LABORATORY

Advanced Refractories for Gasifiers

NETL Office of Research and Development

Current refractory goal is to refine/evaluate composition in commercial gasifiers

 Cr^{+6} formation in high Cr_2O_3 refractories is thermodynamically predicted not to be an issue with current carbon feedstock

- Low oxygen partial pressure results in low Cr⁺⁶ formation
- Gasification environment has O₂ partial pressure about 10⁻⁸

Conversion and Fouling

NETL Office of Research and Development

Modeling

- Evaluate and validate sub-models for particle-slag interaction, particle fragmentation, and mineral matter chemistry (sulfur release) and implement into CFD model
- Develop and evaluate reduced order model to predict mineral matter split between slag and fly ash for entrained-flow gasifier

Convective Syngas Cooler Fouling

- Literature survey of deposition models
- Investigate gasifier ash deposits to determine problematic ash characteristics

Kinetics

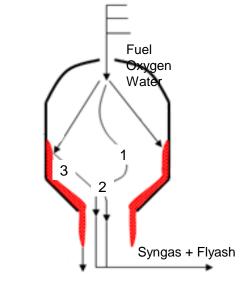
- Effect of pressure on pyrolysis kinetics
- Preliminary gasification kinetics at high pressure

Slag Characterization

 Continue to characterize coal and petcoke blends, characterize ash and slag, begin studies of FeS and VOx behavior in slag

Control of Ash in IGCC

Regional University Alliance


Goal: Solutions to IGCC Ash Management Problems

- Unconverted carbon in gasification flyash
- Syngas cooler fouling

Development of Models and Techniques to improve IGCC plant operations

- Adaption of "Particle Population Model" used for predicting CFB ash splits
- Inorganic transformations and char/slag interactions
- Particle trajectories and deposition modeling
- Gasification kinetics

Coordinate and leverage R&D in 3 universities (PSU, CMU and WVU) and NETL

- 1. Particles contact and coalesce with slag
- 2. Particles do not contact slag
- 3. Particles contact but do not coalesce with slag

Low Rank Coal Optimization

NETL Office of Research and Development

- Development of NETL's Carbonaceous Chemistry for Computational Modeling (C3M) software to bridge coal kinetics software (PCCL, CPD, etc) and available kinetic experiments with CFD software (MFIX, Fluent, Barracuda), other models
- Provide modelers and experimentalist with a virtual kinetic laboratory

Fuel Pretreatment

Kinetics

- Expand and further test the grinding laws developed in FY11
- Correlate the NETL lab scale results with large scale grinding energies

Multiphase Models

 NETL's open source suite of multiphase solvers such as MFIX-DEM, MFIX continuum, MFIX-PIC and multiphase Reduced Order Models will be used to aid in the design and optimization of operating conditions and establishing performance trends in the NCCC/TRIG with uncertainty quantification

Warm Syngas Cleanup NETL Office of Research and Development

Elevated temperatures results in higher IGCC thermal efficiency

Palladium-based sorbents are currently among the most promising candidates for high-temperature capture of mercury, arsenic, selenium, phosphorus and the other trace elements

Progress:

- 2007 License agreement between the NETL and sorbent manufacturer Johnson Matthey
- 2008 The technology received the R&D 100 award
- 2009 to present Over 99% removal of mercury, arsenic, and selenium from dirty syngas slipstreams at 550°F over several weeks testing at the National Carbon Capture Center
- Present Identifying an optimum form of the palladium sorbent (loading, support, alloy)

Advanced Virtual Energy Simulation Training And Research (AVESTAR™) Center

NETL Office of Research and Development

- R&D, Training, and Education for the Operation and Control of Advanced Energy Systems with CO₂ Capture and Storage
- Real-time Dynamic Simulators with Operator Training System (OTS) Capabilities
- 3D Virtual Immersive Training Systems (ITS)

Benefits

- OTS for normal and faulted operations, plant start-up, shutdown, and load following/shedding
- ITS for added dimension of plant realism
- OTS/ITS for training both control room and plant field operators, promoting teamwork

- Work force development in IGCC plant and CO_2 capture operations
- Advanced R&D in process dynamics, model predictive control, sensors, RT optimization, 3D virtual plants, and more

NATIONAL ENERGY TECHNOLOGY LABORATORY For more information on AVESTAR and IGCC training courses, please send email to AVESTAR@netl.doe.gov

Congressionally Directed Projects

69

Arrowhead Center to Promote Prosperity and Public Welfare (PROSPER)

New Mexico State University

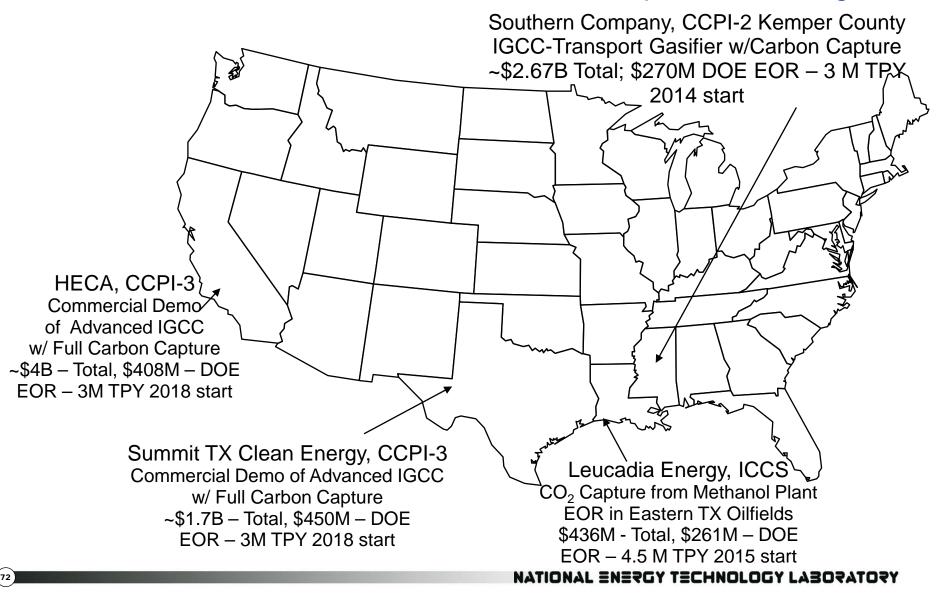
Congressionally Directed Project

Conduct research analyzing the relationships between the fossil-fuel energy sector and economic development issues in New Mexico

Actively engage stakeholders in the research process

Provide a timely, focused economic research product on the inter-relationships between fossil-fuel energy, the economy, and the environment, especially applicable to the State of New Mexico

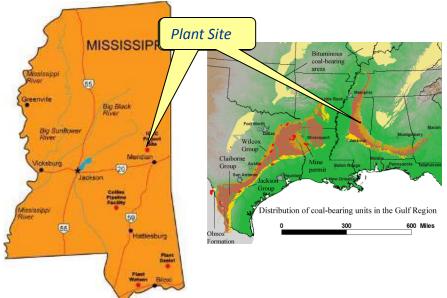
Outreach activities to provide public sector and industry policy-makers with the information and analysis needed to enhance New Mexico's energy economy



DOE Supported Gasification Demonstration Projects

Gasification-Focused Projects

Clean Coal Power Initiative, Industrial Capture & Storage



Southern Company Services, Inc. CCPI-2 Advanced IGCC with CO₂ Capture

- Kemper County, MS
- 582 MWe (net) IGCC: 2 KBR Transport Gasifiers, 2 Siemens Combustion Turbines, 1 Toshiba Steam Turbine
- Mississippi Lignite Fuel
- 65% CO₂ capture (Selexol[®] process) 3,000,000 tons CO₂/year
- EOR Sequestration site TBD (Start 2014)
- Total Project: \$2.01 Billion DOE Share: \$270 Million (13%)

Key Dates

- Project Awarded: Jan 2006
- Project moved to MS: Dec 2008
- Construction: Jul 2010
- NEPA ROD: Aug 2010
- Operations: May 2014

<u>Status</u>

- NEPA Record of Decision: 8/19/2010
- Construction initiated: 9/16/2010
- Process equipment installation underway

73

Hydrogen Energy California Advanced IGCC-Polygen

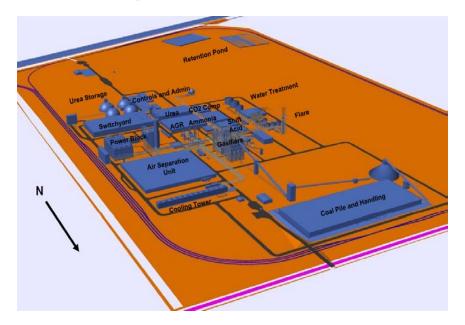
- Kern County, CA
- Up to 280 MWe (net) IGCC,
 1.0 million tons/yr Urea/UAN
- 90% CO₂ capture 2,500,000 tons CO₂/year
- EOR Elk Hills oil field (Start: TBD)
- Fuels: Bituminous Coal/Petcoke
- Maximize use of non-potable water for power production
- Recycle all IGCC/project wastewater with 100% zero liquid discharge
- Total Project: \$4.0 Billion
 DOE \$408 Million (10%)

Key Dates

- Project Awarded: 9/30/2009
- Project Being Re-baselined

IGCC Poly-generation with Integrated Carbon Capture & Sequestration

<u>Status</u>


- New Owner, SCS Energy: 9/2011
- FEED initiated: 9/21/2011
- Sulfur recovery unit process design: 9/27/2011
- NEPA public scoping meeting scheduled: 7/12/2012

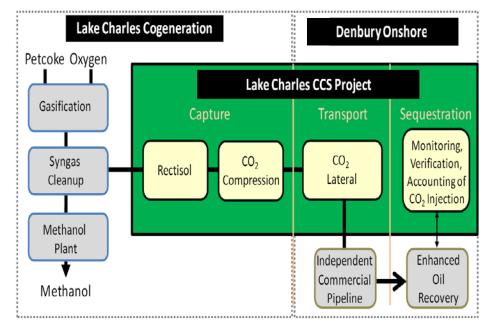
Summit Texas Clean Energy, LLC CCPI-3 Advanced IGCC-Polygen

- Penwell, Ector County, TX
- 400 MWe (gross) Greenfield IGCC with Siemens Gasification and Power Block
 - SFG-500 gasifiers (2 x 50%)
 - High H₂ SGCC6-5000F combined cycle (1 x 1)
- PRB sub bituminous coal fuel
- 90% CO₂ capture 3,000,000 tons CO₂/yr
 - 2-stage Water Gas Shift
 - Linde Rectisol® AGR
- Permian Basin EOR (Start: 2014)
- Total Project: \$1.727 Billion DOE Share: \$450 Million (26%)

Key Dates

- Project Awarded: Jan 2010
- Construction: Jun 2012
- Financial Close: 1st Q FY2012
- Operation: Jul 2014

<u>Status</u>


- Air permit: Dec 2010
- Urea contract: Jan 2011
- CO₂ contract (60% of total): May 2011
- Record of Decision: Sep 2011
- Power off-take agreement executed: Dec 2011

Leucadia Energy, LLC ICCS Area 1 Petcoke Gasification to Methanol

- Lake Charles, LA
- GE Energy Gasification (4 gasifiers: 3 hot/1 spare)
- 730 Million gallons/year methanol
- 90% CO₂ capture (Rectisol[®] process); 4,000,000 tons CO₂/year
- CO₂ to Denbury pipeline for EOR in Texas at the West Hastings oil field (Start 2015)
- Total Project: \$436 Million DOE Share: \$261 Million (60%)

Key Dates

- Phase 2 Awarded: Jun 17, 2010
- Complete FEED: Jul 2011
- Construction: Oct 2012
- Operation: Jun 2015

<u>Status</u>

- FEED completed
- NEPA EIS in progress
- Negotiating product off-take agreements

Mesaba Energy Project CCPI-2 Advanced IGCC

Taconite, Minnesota

No Sequestration

606 MWe(net)

ConocoPhillips E-Gas[™] technology

2 operating gasifiers + 1 spare

2 GE 7FB turbines and 1 steam Bituminous and/or blend of subbituminous and pet-coke

Status:

- Notice of Availability (NOA) for the Final EIS Issued Nov. 2009
- Completing pre-construction permitting

Permits Approved

- Large Electric Power Generating Plant Site
- High Voltage Transmission Line
- Route Permit Pipeline Route

Systems Analysis Gasification Systems Program

78

NETL's Program Analysis Support

On-going and Planned Gasification Studies

Low Rank Coal:

Parallel screening studies for Gasification FY11 awards Cost and Performance Baseline for TRIG[™]

- PRB and ND Lignite Air Blown IGCC
- Texas Lignite Air and Oxygen Blown IGCC

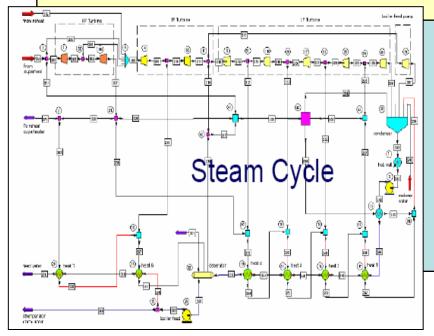
Co-feeding of biomass to meet 90% equivalent CCS IGCC with CCS Pathway Study: Low Rank Coal Co-production assessments Altitude versus shipping sensitivity analysis

IGCC availability studies:

Identifying gaps for conventional technologies Setting targets for advanced technologies

General advanced technology assessments:

IGCC with CCS Pathway: Bituminous Coal, Updates


- DOE IGCC portfolio + PWR compact gasifier assessment
- Pressure sensitivity analysis

Updated WGCU assessment - learnings from TECO design

Technical Approach

1. Extensive Process Simulation (ASPEN)

- All major chemical processes and equipment are simulated
- Detailed mass and energy balances
- Performance calculations (auxiliary power, gross/net power output)

2. Cost Estimation

 Inputs from process simulation (Flow Rates/Gas Composition/Pressure/Temp.)

- Sources for cost estimation
 - WorleyParsons

Vendor sources where available

Follow DOE Analysis Guidelines

Systems Analysis

Bituminous Baseline Study

Full presentation available at: <u>http://www.netl.doe.gov/energy-analyses/baseline_studies.html</u>

Study Matrix

Plant Type	ST Cond. (psig/°F/°F)	GT	Gasifier/ Boiler	Acid Gas Removal/ CO ₂ Separation / Sulfur Recovery	CO ₂ Cap
	1800/1050/1050		GEE	Selexol / - / Claus	
	(non-CO ₂		GEE	Selexol / Selexol / Claus	90%
IGCC	capture cases)	F	СоР	MDEA / - / Claus	
IGCC	1800/1000/1000 (CO ₂ capture	Class	E-Gas	Selexol / Selexol / Claus	90%
			Chall	Sulfinol-M / - / Claus	
	cases)		Shell	Selexol / Selexol / Claus	90%
	2400/4050/4050		Suborition	Wet FGD / - / Gypsum	
PC	2400/1050/1050		Subcritical	Wet FGD / Econamine / Gypsum	90%
PC	0500///00///00		Superaritical	Wet FGD / - / Gypsum	
	3500/1100/1100		Supercritical	Wet FGD / Econamine / Gypsum	90%
NCCC	2400/4050/4050	F	HRSG		
NGCC	2400/1050/1050 Class		пкэс	- / Econamine / -	90%

GEE – GE Energy CoP – Conoco Phillips

IGCC Performance Results

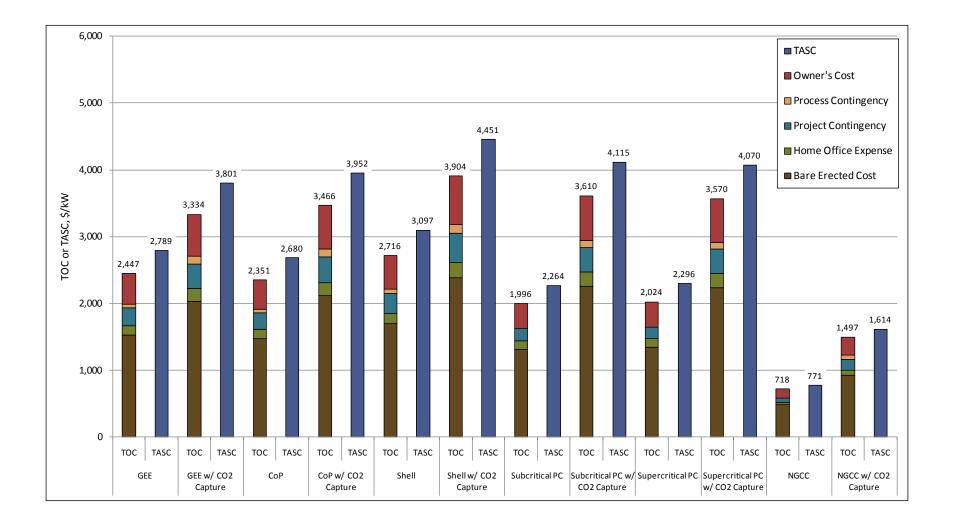
	GE Energy		E-Gas		Shell	
CO ₂ Capture	NO	YES	NO	YES	NO	YES
Gross Power (MW)	748	734	738	704	737	673
Auxiliary Power (MW)				-		
Base Plant Load	25	26	24	28	22	25
Air Separation Unit	98	115	86	111	85	103
Gas Cleanup/CO ₂ Capture	3	19	3	20	1	19
CO ₂ Compression	-	31	-	31	-	30
Total Aux. Power (MW)	126	191	113	190	108	177
Net Power (MW)	622	543	625	514	629	497
Heat Rate (Btu/kWh)	8,756	10,458	8,585	10,998	8,099	10,924
Efficiency (HHV)	39.0	32.6	39.7	31.0	42.1	31.2
Energy Penalty ¹	-	6.4	-	8.7	-	10.9

 $\frac{1CO_2 Capture Energy Penalty}{Penalty} = Percent points decrease in net power plant efficiency due to CO_2 Capture$

PC and NGCC Performance Results

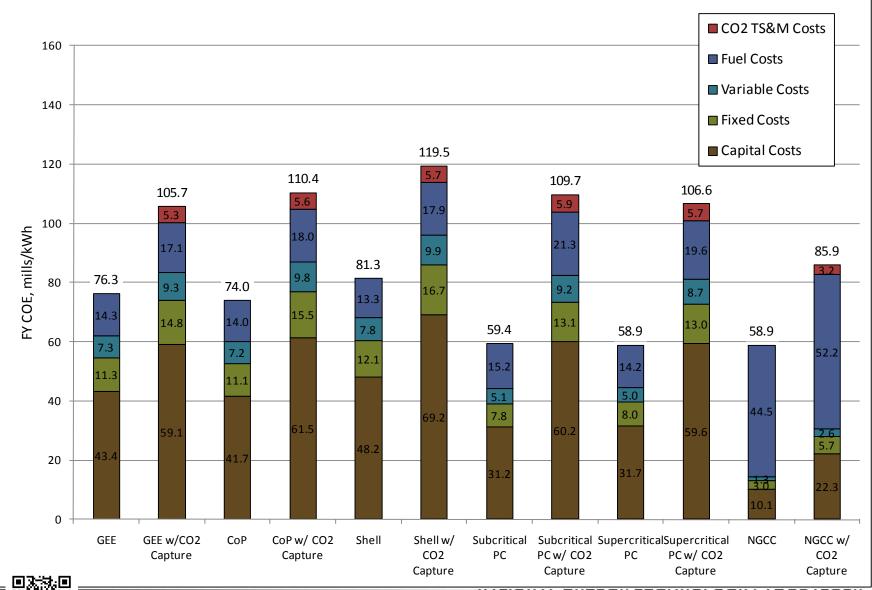
	Subcritical		Supercritical		NGCC	
CO ₂ Capture	NO	YES	NO	YES	NO	YES
Gross Power (MW)	583	673	580	663	565	511
		•				
Base Plant Load	28	45	25	41	10	12
Gas Cleanup/CO ₂ Capture	5	29	5	27	0	10
CO ₂ Compression	-	49	-	45	-	15
Total Aux. Power (MW)	33	123	30	113	10	37
Net Power (MW)	550	550	550	550	555	474
Heat Rate (Btu/kWh)	9,277	13,046	8,687	12,002	6,798	7,968
Efficiency (HHV)	36.8	26.2	39.3	28.4	50.2	42.8
Energy Penalty ¹	-	10.6	-	10.9	-	7.4

 $\frac{1CO_2}{Capture Energy Penalty}$ = Percent points decrease in net power plant efficiency due to CO₂ Capture


IGCC Economic Results

	GE E	nergy	E-Gas		Shell	
CO ₂ Capture	NO	YES	NO	YES	NO	YES
Plant Cost (\$/kWe) ¹						
Base Plant	1,426	1,708	1,423	1,804	1,719	2,164
Air Separation Unit	312	429	281	437	285	421
Gas Cleanup/CO ₂ Capture	249	503	209	500	213	521
CO ₂ Compression	-	71	-	76	-	75
Total Plant Cost (\$/kWe)	1,987	2,711	1,913	2,817	2,217	3,181
Capital COE (\$/MWh)	43.4	59.1	41.7	61.5	48.2	69.2
Fixed COE (\$/MWh)	11.3	14.8	11.1	15.5	12.1	16.7
Variable COE (\$/MWh)	7.3	9.3	7.2	9.8	7.8	9.9
Fuel COE (\$/MWh)	14.3	17.1	14.0	18.0	13.3	17.9
CO ₂ TS&M COE (\$/MWh)	0.0	5.2	0.0	5.5	0.0	5.6
Total COE ² (\$/MWh)	76.3	105.6	74.0	110.3	81.3	119.4
CO ₂ Avoided B v A (\$/ton)	-	54	-	68	-	77
CO ₂ Avoided B v SCPC (\$/ton)	-	82	-	91	-	108

¹Total Plant Capital Cost (Includes contingencies and engineering fees but not owner's costs) ²80% Capacity Factor, 17.73% Capital Charge Factor, Coal cost \$1.64/10⁶Btu

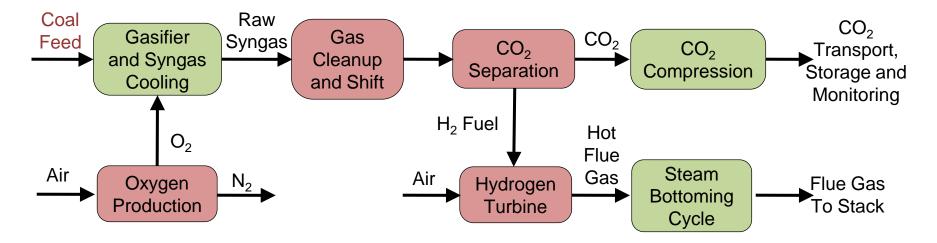


Plant Cost Comparison

Cost of Electricity Comparison

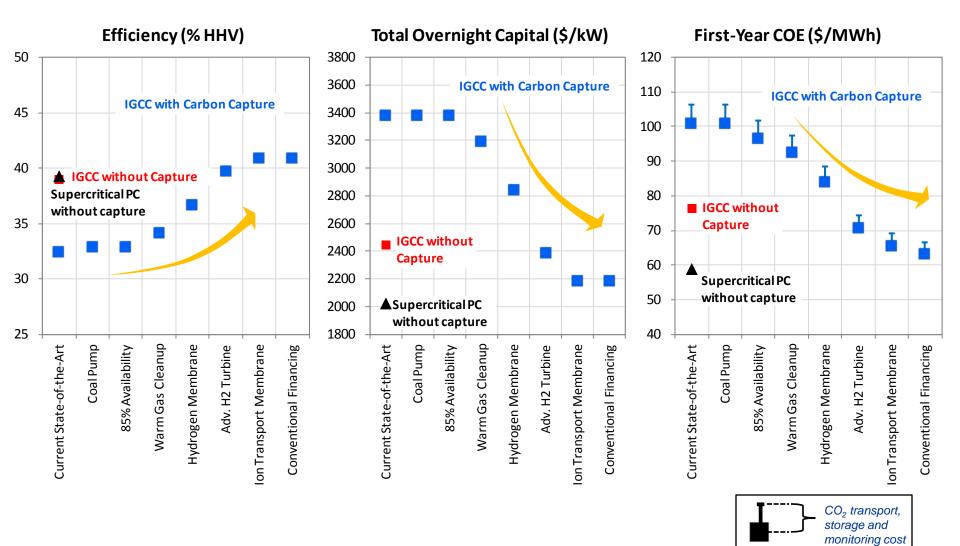
87

CO₂ Avoided Costs

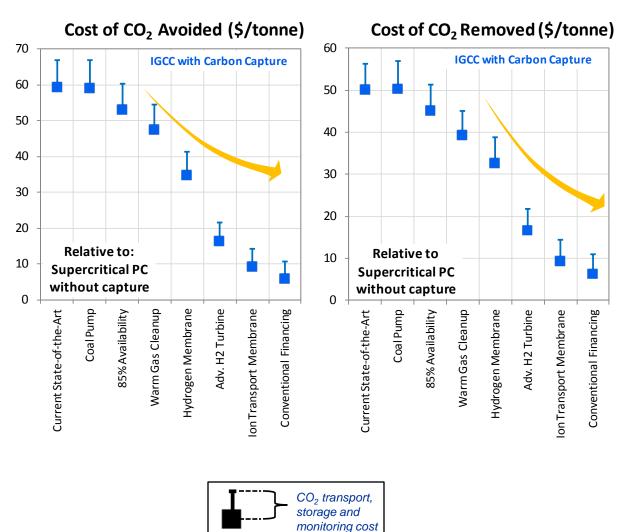


88

Systems Analysis Bituminous IGCC Pathway Study


IGCC Advanced Technology Assessments

	Technology Advancements						
Coal Feed System	Slurry Feed	\rightarrow	Coal Feed Pump				
Oxygen Production	Cryogenic Air Separation	\rightarrow	Ion Transport Membrane				
Gas Cleanup	Selexol	\rightarrow	Warm Gas Cleanup				
Turbine	Adv F Turbine →	Adv H ₂ Turbine \rightarrow	Next Gen Adv Turbine				
CO ₂ Separation	Selexol	\rightarrow	H ₂ Membrane				
Capacity Factor	80% →	85% →	90%				


Advanced IGCC Systems Driving Down the Cost

PRELIMINARY RESULTS – SUBJECT TO CHANGE

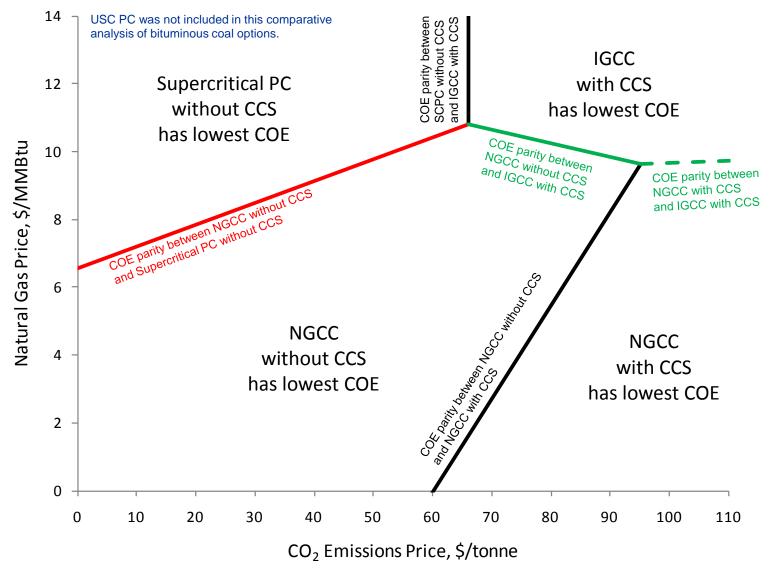
Advanced IGCC Systems Driving Down the Cost

CO₂ emissions value to incentivize CCS drops from \$65 to \$10 per tonne with successful R&D

 Measured by cost of CO₂ avoided with CO₂ TS&M

 CO_2 power plant gate sales price for CO_2 -EOR to incentivize CCUS drops from \$50 to \$5 per tonne with successful R&D

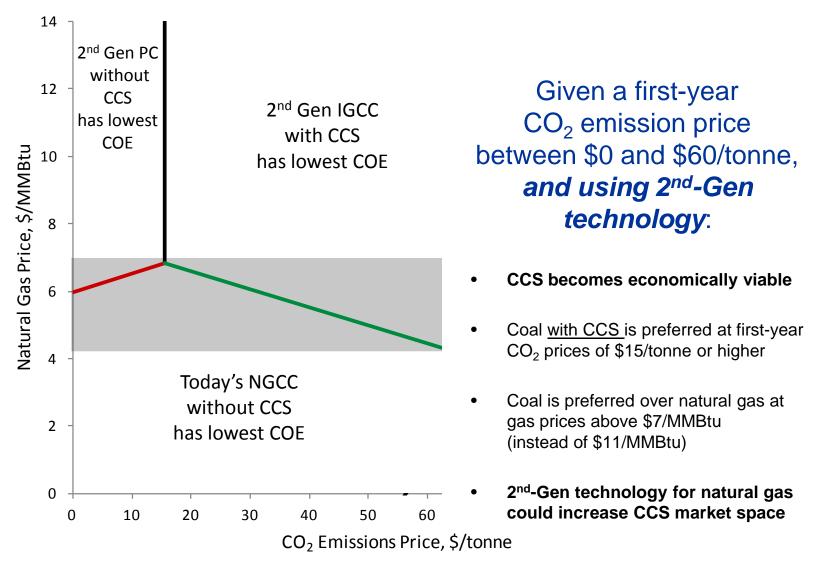
 Measured by cost of CO₂ removed excluding CO₂ TS&M


NATIONAL ENERGY TECHNOLOGY LABORATORY

TS&M: Transportation, storage, and monitoring

PRELIMINARY RESULTS – SUBJECT TO CHANGE

Lowest Cost Power Generation Options MIDWEST (sea level): *Today's NGCC versus Today's Coal (Bituminous)*



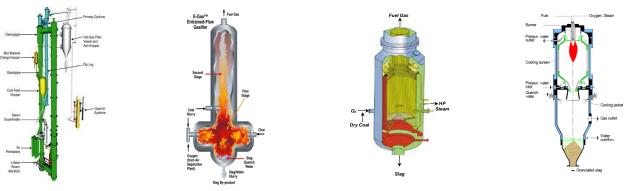
NATIONAL ENERGY TECHNOLOGY LABORATORY

Assumes capacity factor = availability (i.e. all plants including NGCC are base load). Assumes bituminous coal at delivered price of \$1.64/MMBtu

Lowest Cost Power Generation Options MIDWEST (sea level): Today's NGCC versus 2nd Generation Coal (Bituminous)

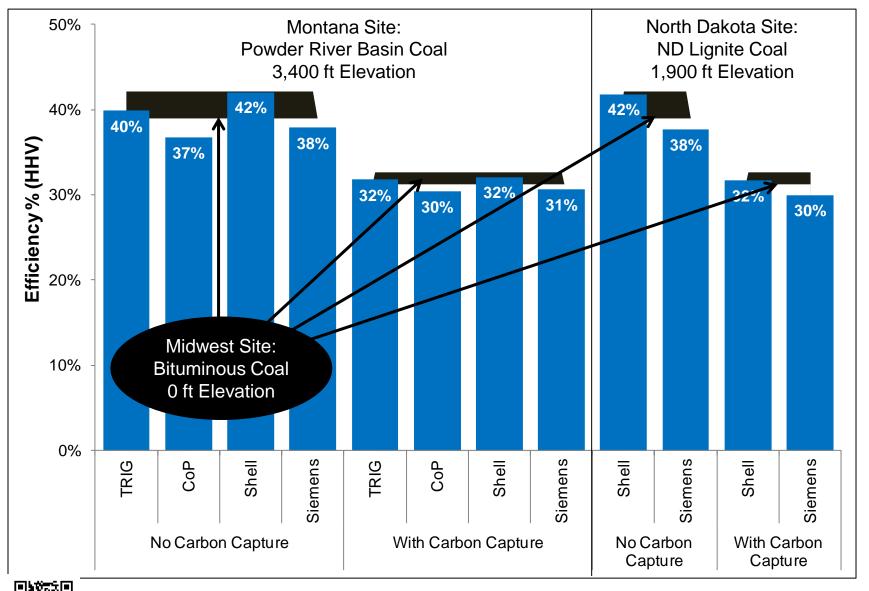
NATIONAL ENERGY TECHNOLOGY LABORATORY

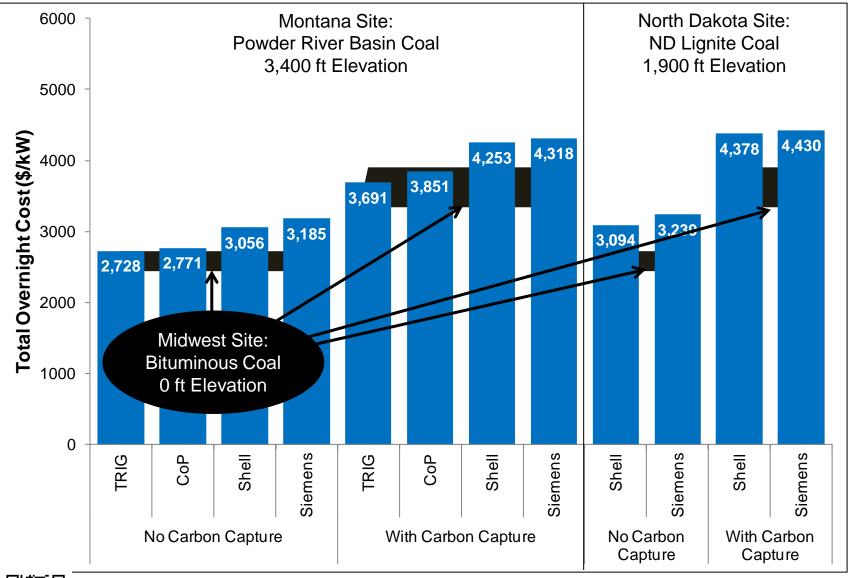
Assumes capacity factor = availability (i.e. all plants including NGCC are base load). Assumes coal price of \$1.64/MMBtu PRELIMINARY RESULTS – SUBJECT TO CHANGE


Systems Analysis Low Rank Coal Baseline Study: IGCC Cases

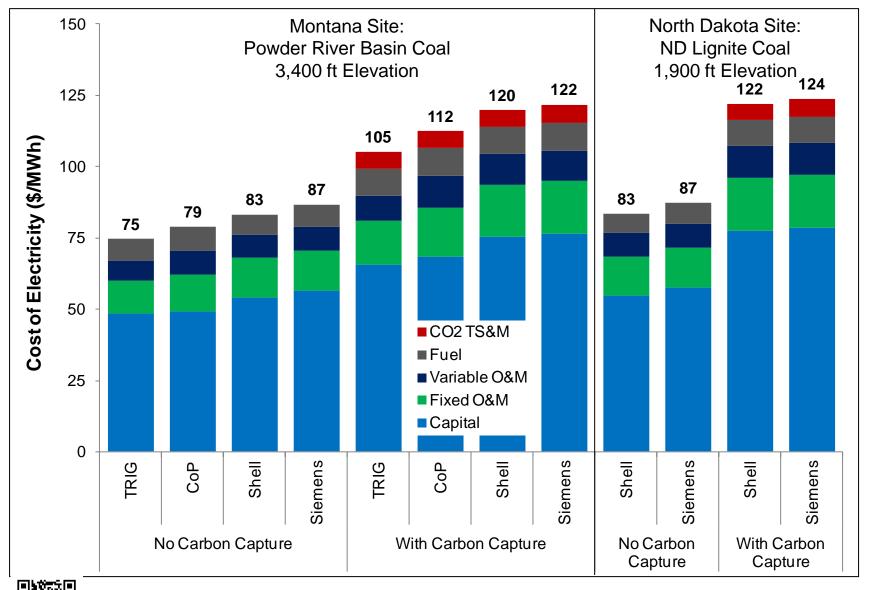
Full presentation available at:

http://www.netl.doe.gov/energy-analyses/baseline_studies.html

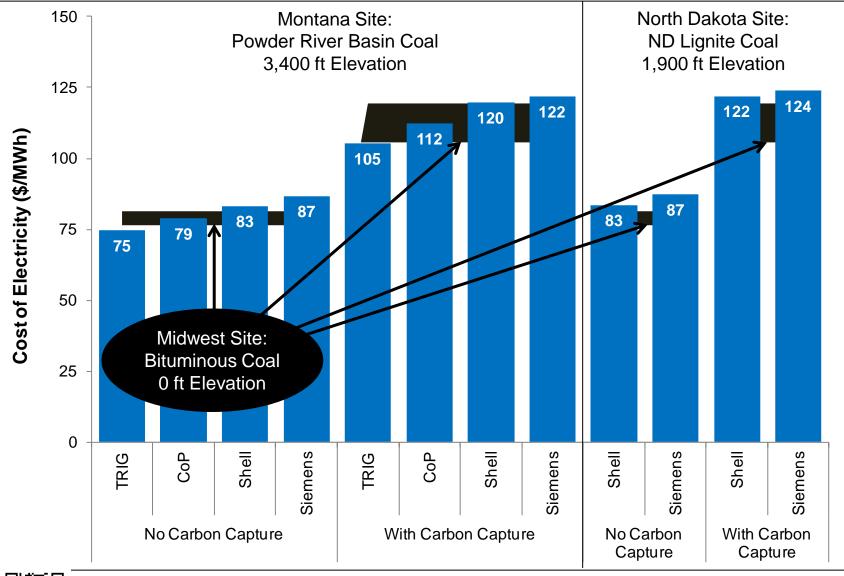

IGCC Cases: Technical Design Basis


	Southern Company TRIG	ConocoPhillips E-Gas	Shell SCGP	Siemens (GSP/Noell)		
Gasifier	Transport	Slurry; entrained	Dry-fed er	ntrained		
Coal Type	PF	RB	PRB & ND Lignite			
Location/Elevation	Montana/3400 ft		PRB: Montana/3400 ft Lignite: ND/1900 ft			
Coal Drying	Indirectly heated fluidized bed	NA	WTA pro	ocess		
Oxidant	Oxygen					
AGR for CO2 capture plants	2-Stage Selexol					
Gas Turbine	Advanced F-class (Nitrogen dilution and air integration maximized)					
Steam Cycle (psig/F/F)	1800/1050/1050 (non-CO ₂ capture cases) 1800/1000/1000 (CO ₂ capture cases)					
Carbon Capture	83% 90%					
Availability	80%					

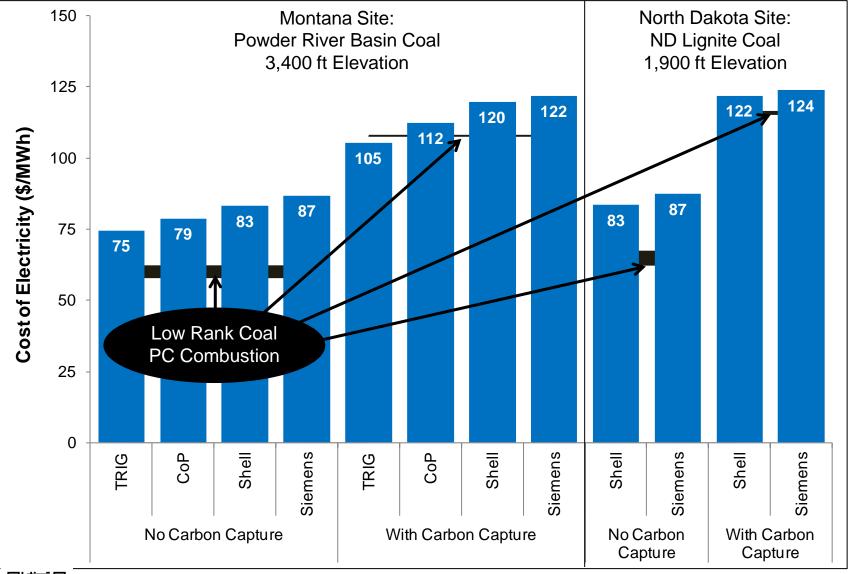
IGCC Efficiency: Bituminous Coal Comparison



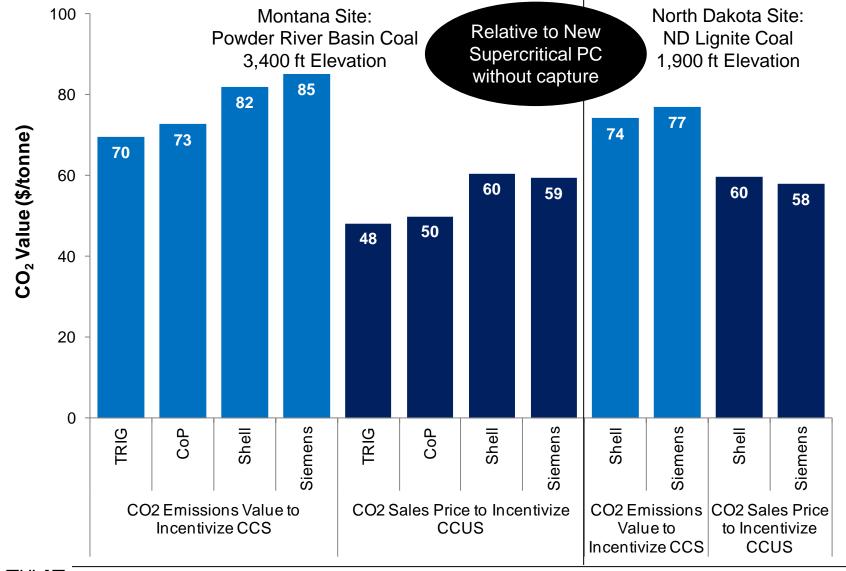
IGCC Plant Cost: Bituminous Coal Comparison



Conventional IGCC: COE

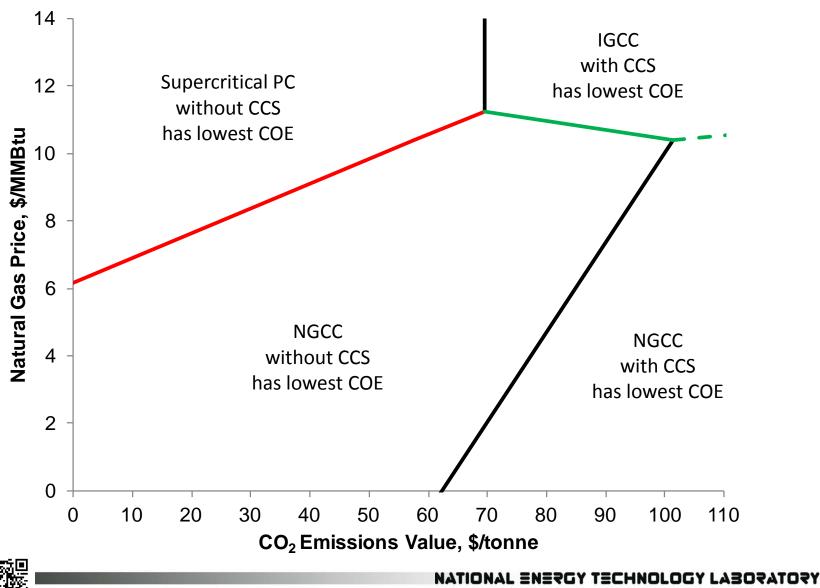

99

IGCC COE: Bituminous Coal Comparison



IGCC COE: Comparison to PC Plants

Conventional IGCC: CO₂ Capture Cost


102

NATIONAL ENERGY TECHNOLOGY LABORATORY

CCUS = Carbon capture, utilization and storage

Lowest Cost Power Generation Options

Western (3400 ft): Today's NGCC versus Today's Coal (PRB)

Assumes capacity factor = availability (i.e. all plants including NGCC are base load).

Key Findings & Next Steps

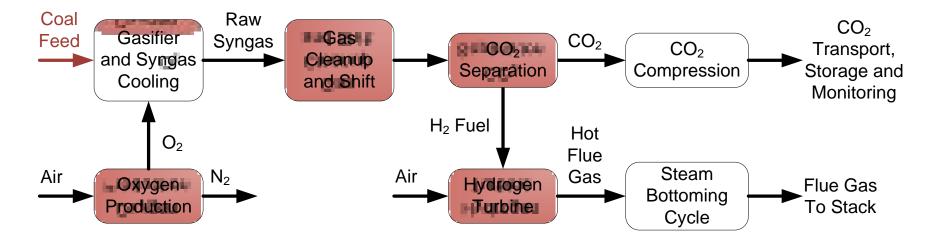
- Transport gasifier provides low cost IGCC power
- Slurry-fed gasification still competitive for high-moisture PRB coal
- Western location/low rank coal gasification COE on par with midwest/bituminous coal gasification
- IGCC with carbon capture COE essentially equivalent to PC PRB
- All coal systems, with and without carbon capture, face challenges competing in today's U.S. market
 - No carbon policy
 - Current natural gas prices
- Opportunities for IGCC
 - State-of-the-Art: Co-production, CO₂ utilization via enhanced oil recovery
 - 2nd Gen: R&D and demonstration for advanced technologies

Systems Analysis Low Rank Coal IGCC Pathway Study

105

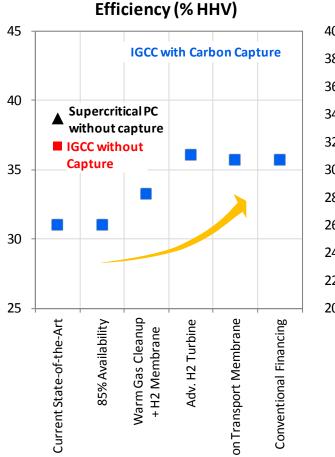
Systems Analyses for Advanced IGCC

• Objectives:

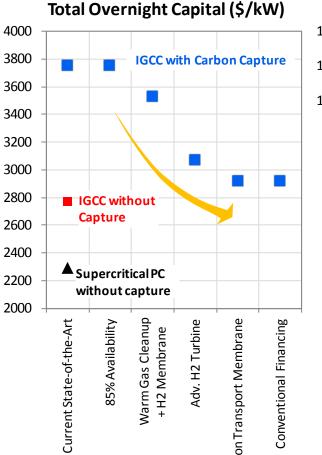

- Evaluate improved performance and cost resulting from DOEfunded R&D
- Identify enabling technologies within the portfolio
- Show relative contribution of different R&D efforts
- Identify/highlight gaps for low rank coal R&D pathway

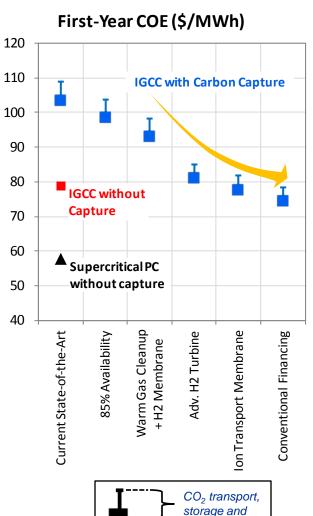
• Approach:

- Begin with established cost and performance of conventional IGCC
 - CoP E-Gas selected as reference plant
- Substitute conventional technologies with advanced technologies in a cumulative fashion assuming successful R&D
- Evaluate cost and performance in a manner consistent with baseline studies

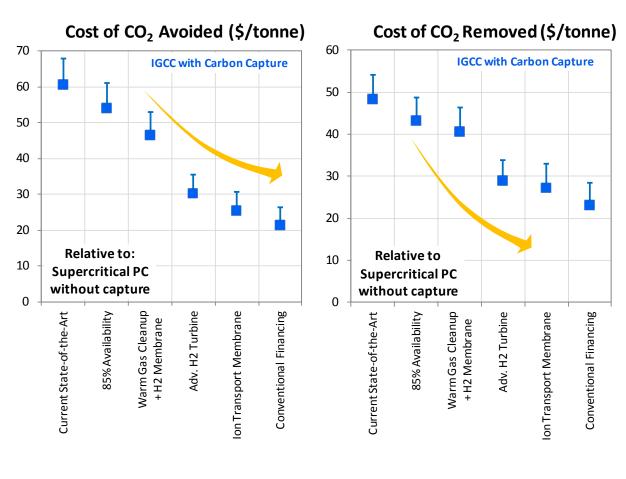


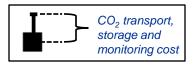
Advanced Technology Progression




	Technology Progression							
Gas Cleanup	Physical Solvent	\rightarrow	Warm	Gas Cleanup (WGCU)				
CO ₂ Separation	Physical Solvent	\rightarrow	H ₂ Membrane					
Gas Turbine	Advanced F-Class	\rightarrow	Advan	ced Hydrogen Turbine				
Oxygen Production	Cryogenic Air Separation	\rightarrow	Ion Trar	nsport Membrane (ITM)				
Availability	80% →	85%	\rightarrow	90%				

Advanced IGCC Systems – PRB Coal Driving Down the Cost


108



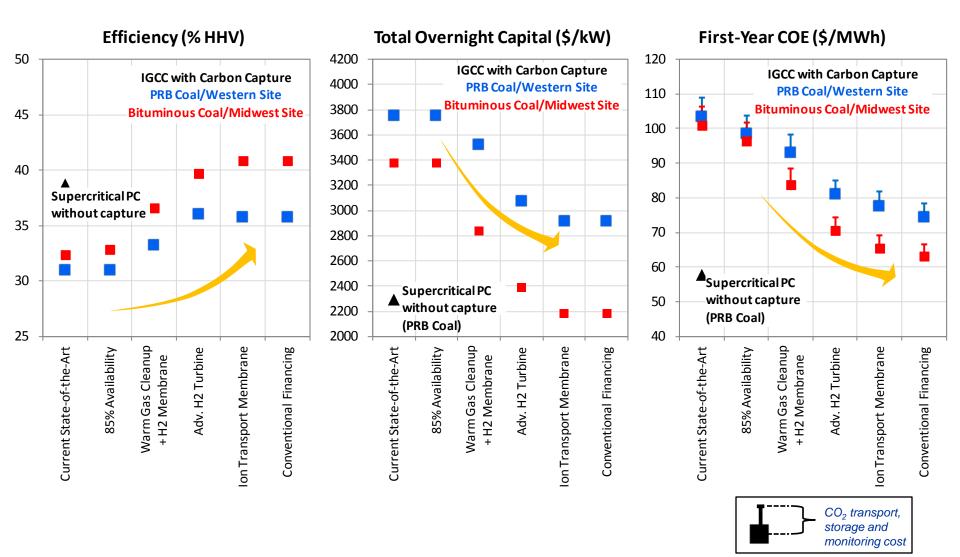
monitoring cost

Advanced IGCC Systems – PRB Coal Driving Down the Cost

109

CO₂ emissions value to incentivize CCS drops from \$70/tonne to \$25/tonne with successful R&D

 Measured by cost of CO₂ avoided with CO₂ TS&M

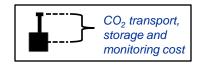

CO₂ power plant gate sales price for CO₂-EOR to incentivize CCUS drops from \$50/tonne to \$25/tonne with successful R&D

 Measured by cost of CO₂ removed excluding CO₂ TS&M

NATIONAL ENERGY TECHNOLOGY LABORATORY

PRELIMINARY RESULTS - SUBJECT TO CHANGE

Advanced IGCC Systems Driving Down the Cost

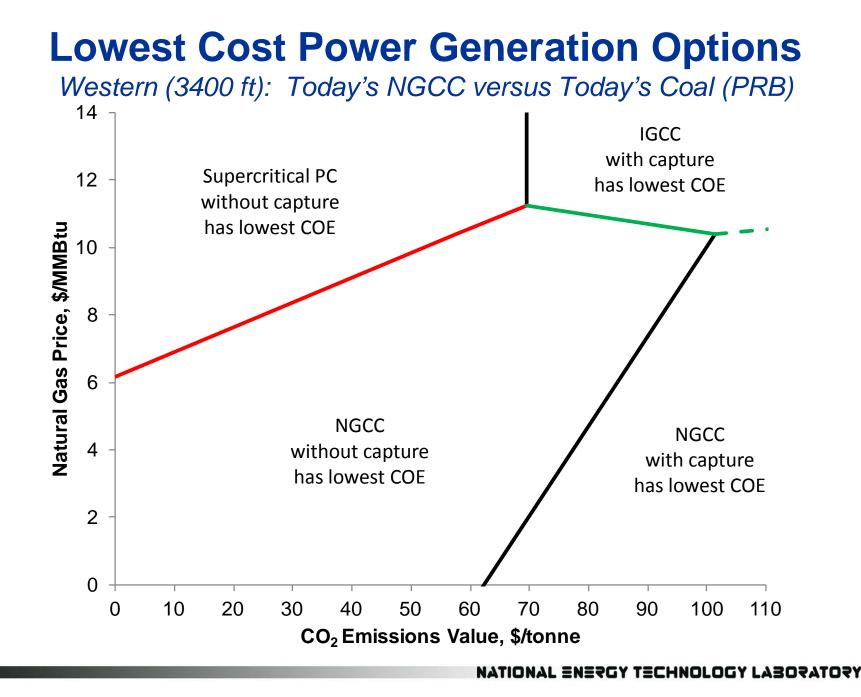

NATIONAL ENERGY TECHNOLOGY LABORATORY

PRELIMINARY RESULTS – SUBJECT TO CHANGE

(110)

Advanced IGCC Systems Driving Down the Cost

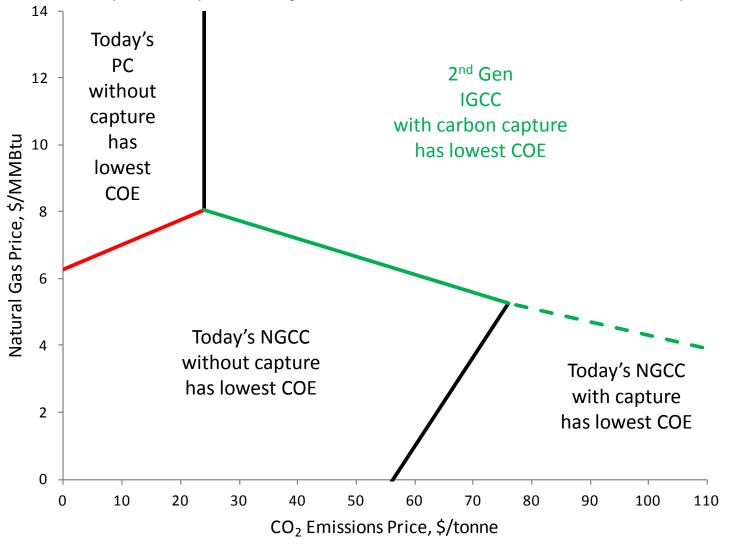
CO₂ emissions value to incentivize CCS drops from \$70/tonne to \$10-25/tonne with successful R&D


 Measured by cost of CO₂ avoided with CO₂ TS&M

CO₂ power plant gate sales price for CO₂-EOR to incentivize CCUS drops from \$50/tonne to \$10-25/tonne with successful R&D

 Measured by cost of CO2 removed excluding CO2 TS&M

NATIONAL ENERGY TECHNOLOGY LABORATORY


PRELIMINARY RESULTS – SUBJECT TO CHANGE

Assumes capacity factor = availability (i.e. all plants including NGCC are base load).

Lowest Cost Power Generation Options

Western (3400 ft): Today's NGCC versus 2nd Gen IGCC (PRB)

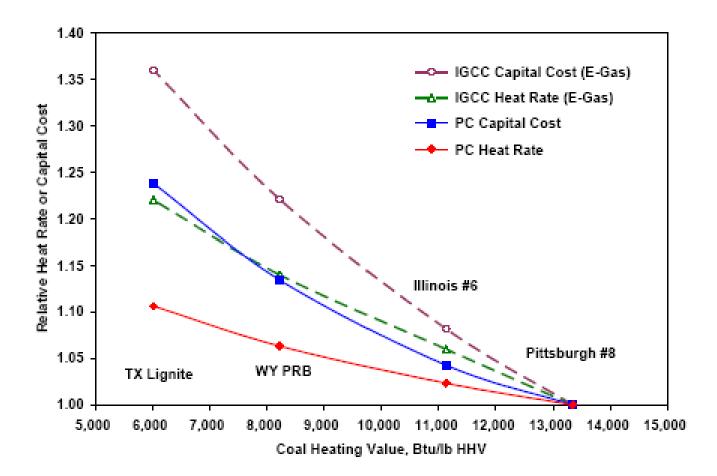
NATIONAL ENERGY TECHNOLOGY LABORATORY

Assumes capacity factor = availability (i.e. all plants including NGCC are base load).

Findings of Study and Gaps

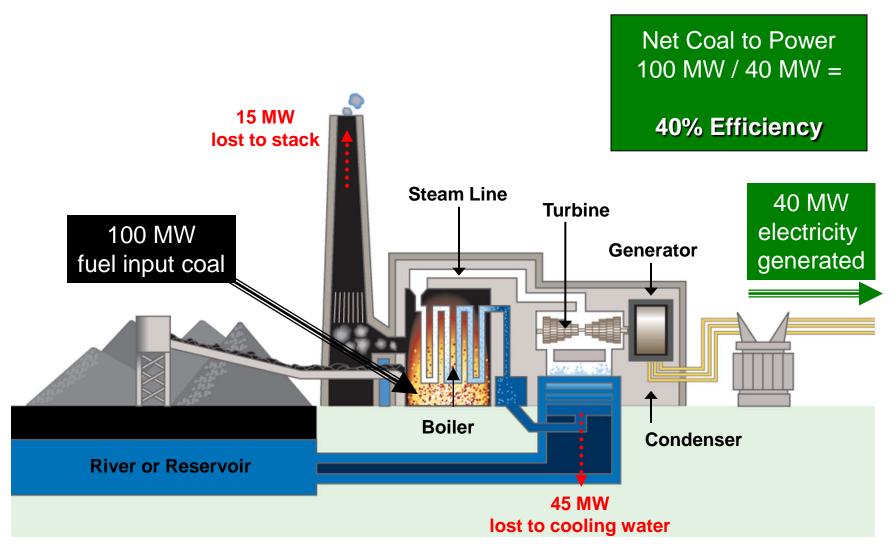
- Current DOE portfolio provides 5 points efficiency gain, 30% reduction in COE relative to today's IGCC with CCS
- High pressure gasification may be needed to enable advanced technologies in current R&D portfolio
 - Managing WGCU pressure drop, hydrogen membrane driving force, meeting fuel gas pressure needs for advanced hydrogen turbine
- Evaluation of alternatives to slurry-fed gasification for 2nd Gen IGCC recommended

Conventional IGCC Compared to PC and NGCC


Fundamental Comparison of IGCC with Advanced PC-Fired Plant

Ash ControlLow Vol. SlagFly/Bottom AshTrace ElementsSlag CaptureESP/StackWastes/By-productsSeveral MarketsLimited Markets		IGCC	PC	
Temperature≤ 3000 F≤ 3200 FPressure415-1000 psiaAtmosphericSulfur ControlConcentrate GasDilute GasNitrogen ControlNot NeededPre/Post CombustionAsh ControlLow Vol. SlagFly/Bottom AshTrace ElementsSlag CaptureESP/StackWastes/By-productsSeveral MarketsLimited Markets	Operating Principles	Partial Oxidation	Full Oxidation	
Pressure415-1000 psiaAtmosphericSulfur ControlConcentrate GasDilute GasNitrogen ControlNot NeededPre/Post CombustionAsh ControlLow Vol. SlagFly/Bottom AshTrace ElementsSlag CaptureESP/StackWastes/By-productsSeveral MarketsLimited Markets	Fuel Oxidant	Oxygen	Air	
Sulfur ControlConcentrate GasDilute GasNitrogen ControlNot NeededPre/Post CombustionAsh ControlLow Vol. SlagFly/Bottom AshTrace ElementsSlag CaptureESP/StackWastes/By-productsSeveral MarketsLimited Markets	Temperature	≤ 3000 F	\leq 3200 F	
Nitrogen ControlNot NeededPre/Post CombustionAsh ControlLow Vol. SlagFly/Bottom AshTrace ElementsSlag CaptureESP/StackWastes/By-productsSeveral MarketsLimited Markets	Pressure	415-1000 psia	Atmospheric	
Ash ControlLow Vol. SlagFly/Bottom AshTrace ElementsSlag CaptureESP/StackWastes/By-productsSeveral MarketsLimited Markets	Sulfur Control	Concentrate Gas	Dilute Gas	
Trace ElementsSlag CaptureESP/StackWastes/By-productsSeveral MarketsLimited Markets	Nitrogen Control	Not Needed	Pre/Post Combustion	
Wastes/By-productsSeveral MarketsLimited Markets	Ash Control	Low Vol. Slag	Fly/Bottom Ash	
	Trace Elements	Slag Capture	ESP/Stack	
Efficiency (HHV) 39-42% 37-40%	Wastes/By-products	Several Markets	Limited Markets	
	Efficiency (HHV)	39-42%	37-40%	

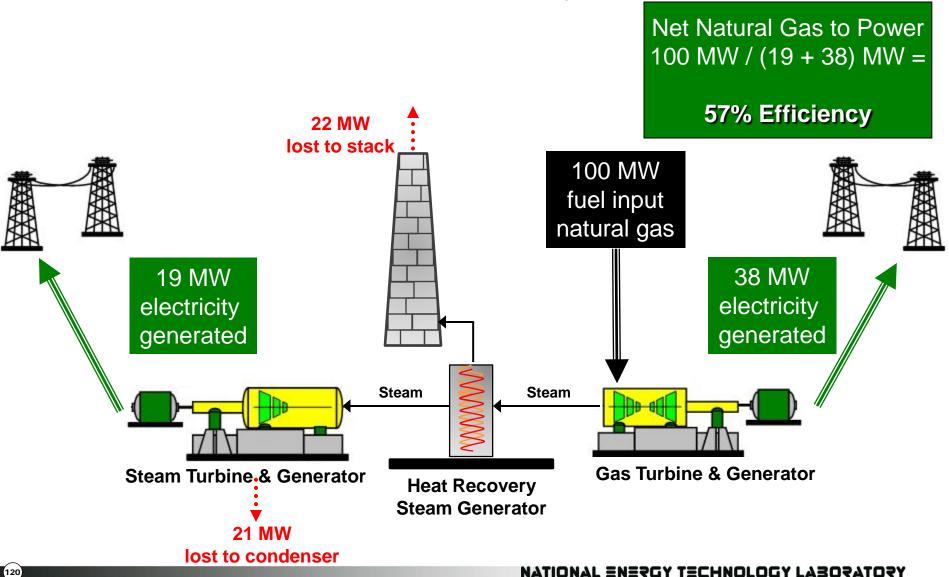
Comparison of Air Emission Controls: PC vs. IGCC


	Sulfur	NO _x	PM	Mercury	
PC Post Combustion	FGD system	Low-NO _x burners and SCR	ESP or baghouse	Inject activated carbon	
IGCC Pre Combustion	Chemical and/or physical solvents	Syngas saturation and N ₂ diluent for GT and SCR	Wet scrubber, high temperature cyclone, barrier filter	Pre-sulfided activated carbon bed	

Effect of Coal Quality on PC and IGCC Plant Heat Rates and Capital Costs

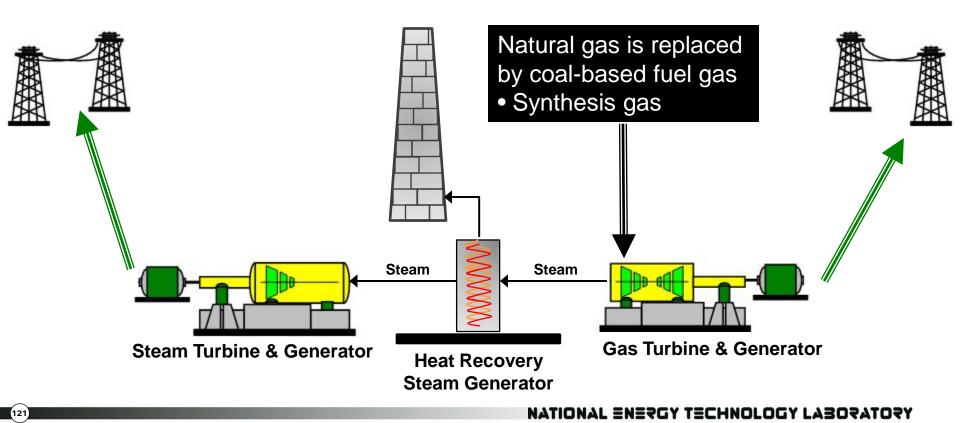
NATIONAL ENERGY TECHNOLOGY LABORATORY

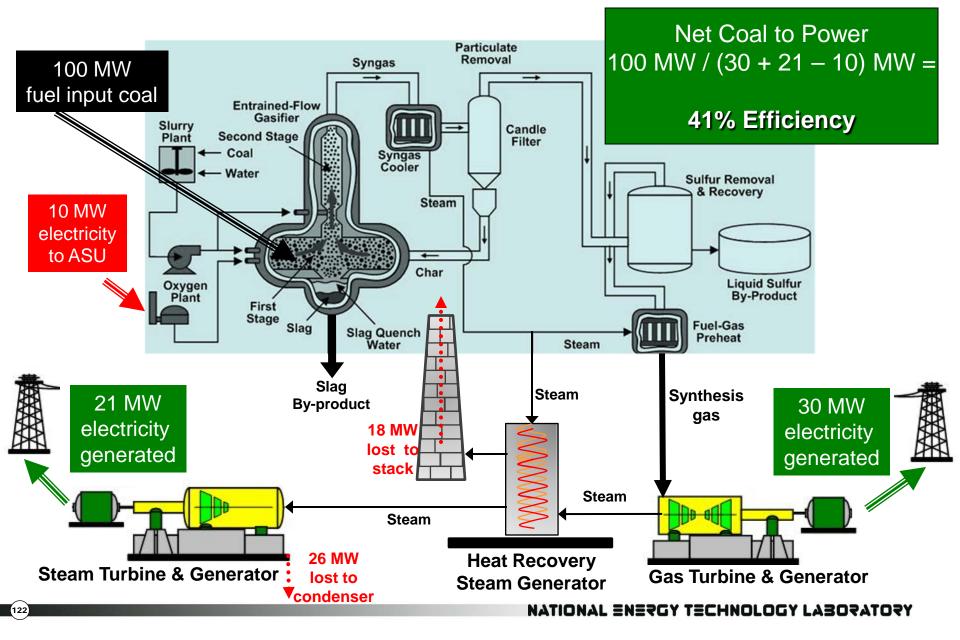
Conventional Coal Plant (Illustration only)



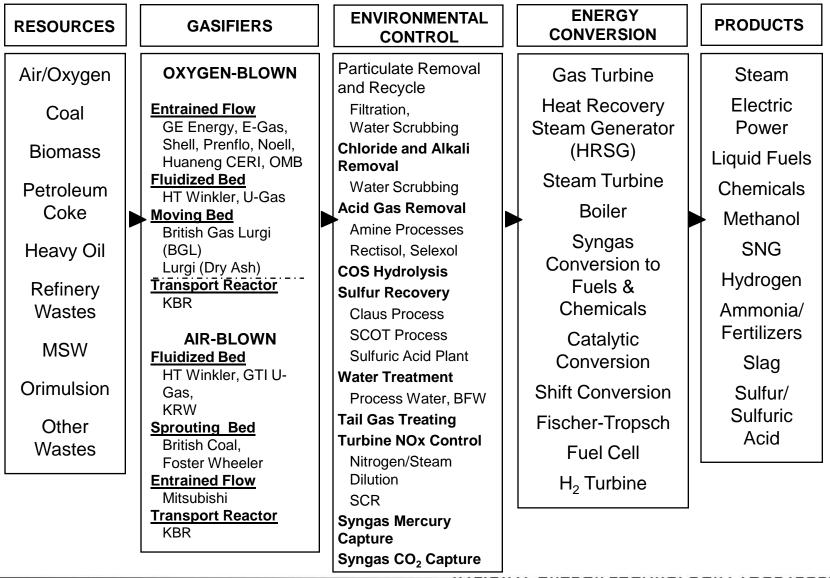
NATIONAL ENERGY TECHNOLOGY LABORATORY

Natural Gas Combined Cycle


(Illustration only)


Coal-Based IGCC Power Plant

Gasification Island


Converts coal to synthesis gas
Cleans & conditions synthesis gas

Coal-Based IGCC Power Plant

Gasification-Based Energy Conversion Systems

123

NATIONAL ENERGY TECHNOLOGY LABORATORY

Commercial IGCC Plants

124

Commercial IGCC Plants in the U.S.

Active and Under Construction (excluding DOE supported demonstration projects)

Wabash River Coal Gasification Repowering Project – 262 MWe coal/petcoke (1995 - present)

Tampa Electric Polk Power Station

- 250 MWe coal/petcoke (1996 - present)

Duke Energy's Edwardsport Integrated Gasification Combined Cycle Station

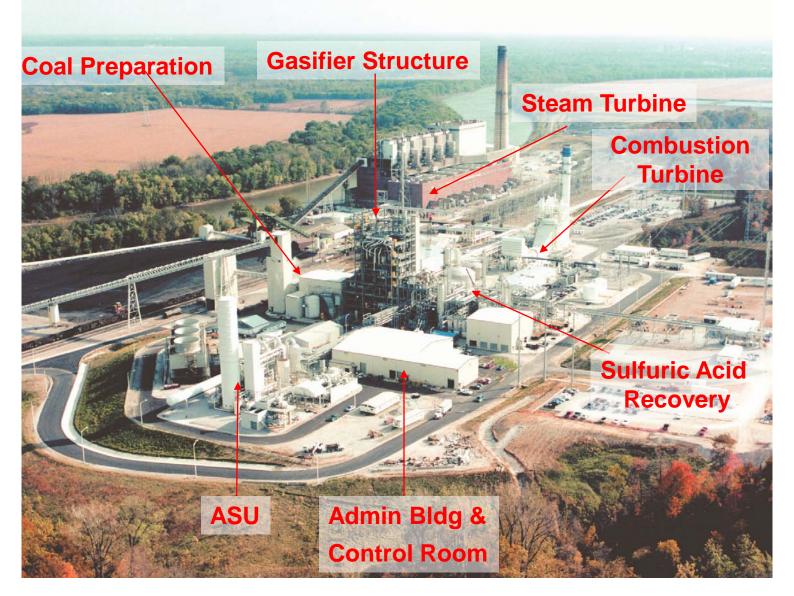
- 630 MWe coal (2012 start up)

Wabash River IGCC

SG Solutions - West Terre Haute, Indiana

Plant startup July 1995 E-Gas gasifier

- ConocoPhillips
 2,500 tons/day coal or petcoke
 Bituminous coal
- 1995 thru August 2000
 Petcoke
 - 2000 thru Present
- DOE CCT Round IV
 - Repowering project



Power generation

- Combustion turbine: 192 MWe
- Steam turbine: 105 MWe
- Internal load: <u>-35 MWe</u>
- Net output: 262 MWe

NATIONAL ENERGY TECHNOLOGY LABORATORY

Wabash River IGCC Plant Aerial Photo

Polk Power Station Unit 1 *Tampa Electric Co. – Mulberry, FL*

GE Gasifier

- Oxygen blown
- Slurry fed
- Entrained flow
- Refractory lined

Feedstock 2,200 tons/day

- Coal and petcoke blend

CT is GE 7F

Single train configuration

One gasifier supplying one CT

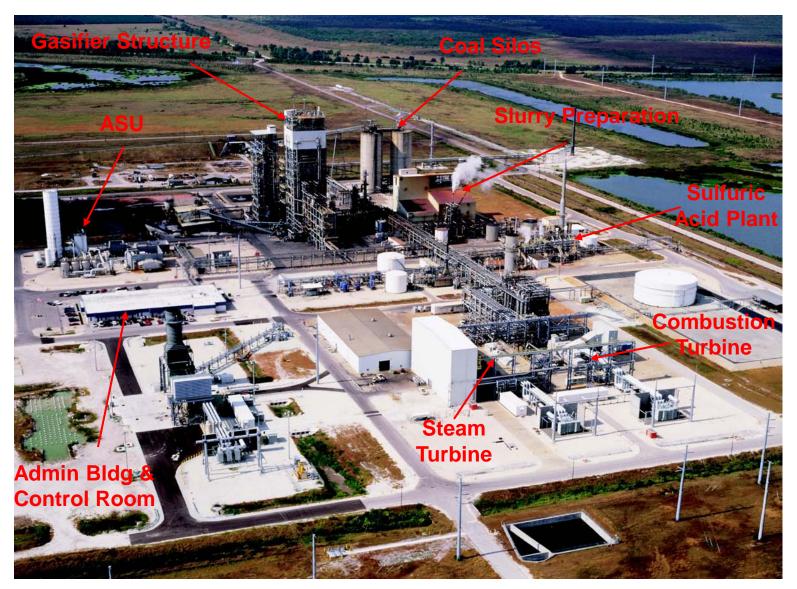
Acid gas removal via

- MDEA and COS hydrolysis

DOE Clean Coal Technology Program

- Plant startup July 1996

Polk Power Station, Unit


Power generation

- Combustion turbine: 192 MWe
- Steam turbine: 123 MWe
- Internal load: 55 MWe
- Other auxiliaries:
- Net output 250 MWe

NATIONAL ENERGY TECHNOLOGY LABORATORY

- <u>10 MWe</u>

Polk Power Station Aerial Photo

(129)

Edwardsport 630 MW IGCC Project Duke Energy

- 2 x GE Gasifier
- 2 x GE 7 FB combustion turbines
 - 232 MWe each
- GE steam turbine
 - 320 MWe
- 1.5 million tons of coal per year
- Total project cost:
 - \$ 2.98 billion
 - \$133.5 million Federal investment tax credit award
 - \$460 million in local, state and federal tax incentives

Projected Startup Late 2012

Gasifier being installed at Duke Energy's Edwardsport Station

JECT SITE

NATIONAL ENERGY TECHNOLOGY LABORATORY

Image courtesy of Duke Energy Indiana

ELCOGAS *Puertollano, Spain*

PRENFLO gasifier

 Pressurized entrained flow gasifier now offered by Uhde

Oxygen blown

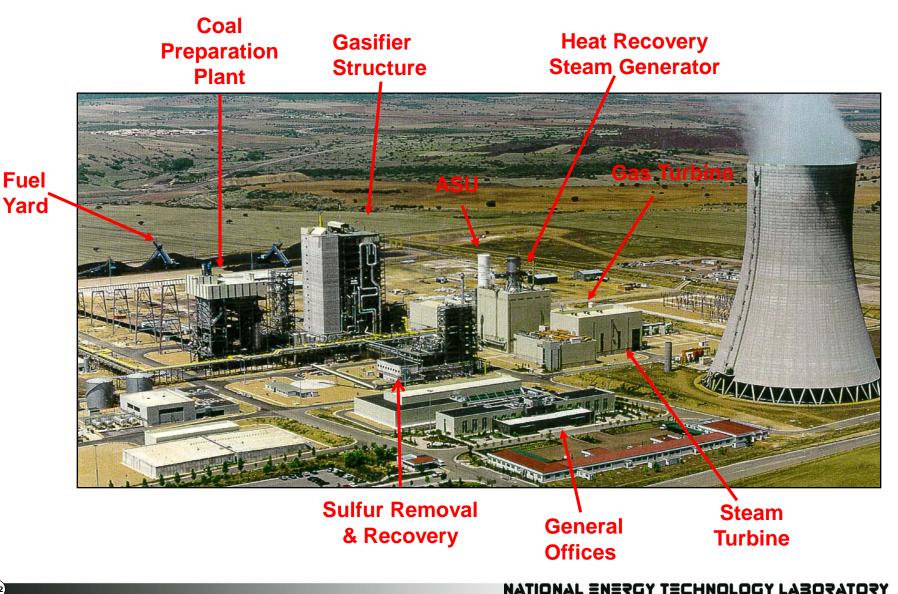
2,600 tons/day coal and petcoke

Commercial operation began in 1996 with natural gas

In 1998 began operating on 50/50 Petroleum coke / local Spanish coal (~ 40% ash)

Siemens V94.3 gas turbine

Independent power project without a power purchase agreement (PPA)


IGCC Plant Puertollano, Spain

Power generation

- Combustion turbine 182.3 MWe
- Steam turbine 135.4 MWe
- Internal load
 <u>35.0 MWe</u>
- Net output 282.7 MWe

NATIONAL ENERGY TECHNOLOGY LABORATORY

ELCOGAS Plant Aerial Photo

Vresova IGCC Power Plant

Vřesová, Czech Republic

1970 Town Gas Production

1996 Converted to IGCC

26 Lurgi Gasifiers – Entrained flow

- Dry coal feed Lignite
- 1 Siemens SFG-200 Entrained
 - Added 2007
 - Oxygen blown Full quench
 - Feedstock: Phenols, tars, petrol, etc. created during gasification
- 2 GE Combustion turbines
 - FRAME 9 E (9171 E)

ABB ES Steam turbine

Vřesová IGCC Plant, Czech Republic

Power generation

- Combustion turbine: 309 MWe
- Steam turbine: 114 MWe
- Internal load: <u>25 MWe</u>
- Net output: 398 MWe

NATIONAL ENERGY TECHNOLOGY LABORATORY

Nuon IGCC Plant Buggenum, The Netherlands

- Shell Gasification
 - Offered jointly with Krupp
 Uhde

Gas turbine: Siemens V94.2

- 2,000 tons/day feedstock
 - Bituminous coal
 - Biomass

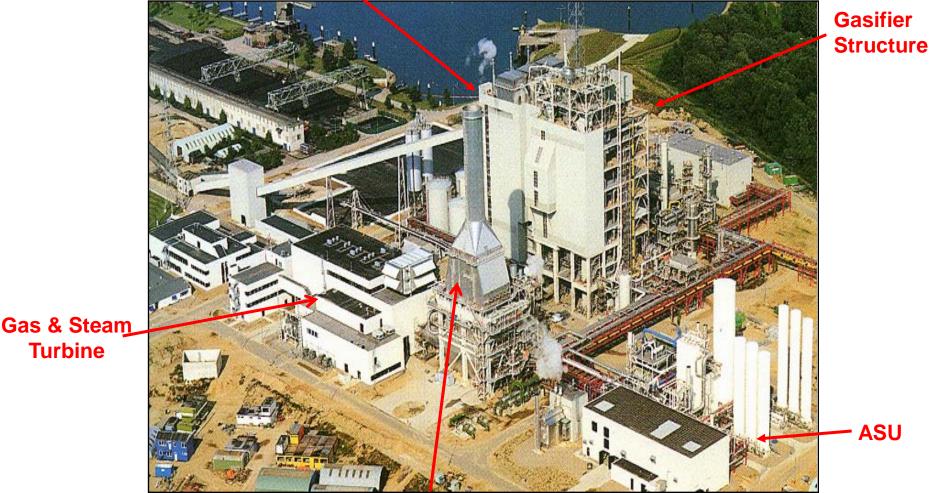
Plant startup 1993

Buggenum IGCC Plant

Power generation

- Combustion turbine: 155 MWe

128 MWe


- 30 MWe

- Steam turbine:
- Internal load:
- Net output: 253 MWe

Only large-scale biomass installation in operation today

Nuon Plant Aerial Photo

Coal Preparation Plant

Heat Recovery Steam Generator

Note: Sulfur Removal & Recovery (out of view)

NATIONAL ENERGY TECHNOLOGY LABORATORY

CourteSy/Rtu05.10.99

Clean Coal Power R&D IGCC Demonstration Plant Nakoso, Japan

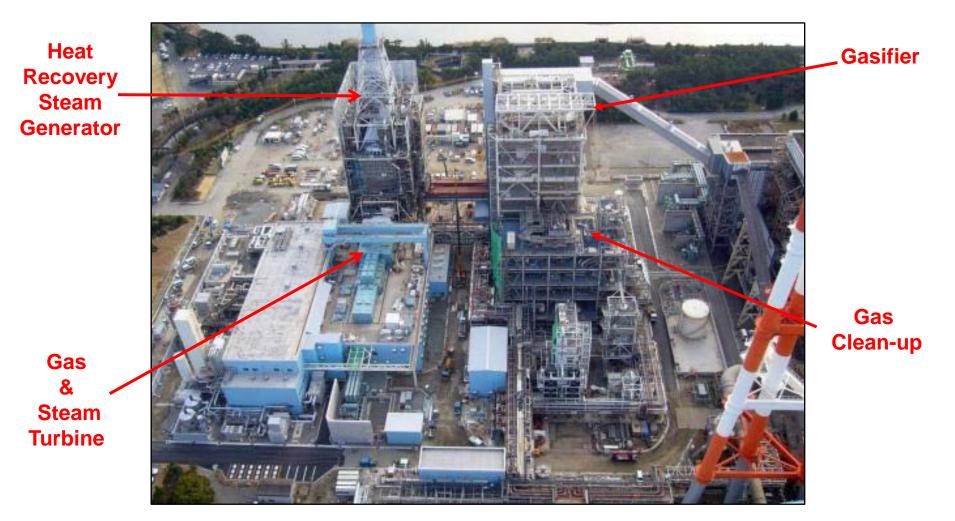
Mitsubishi Gasifier

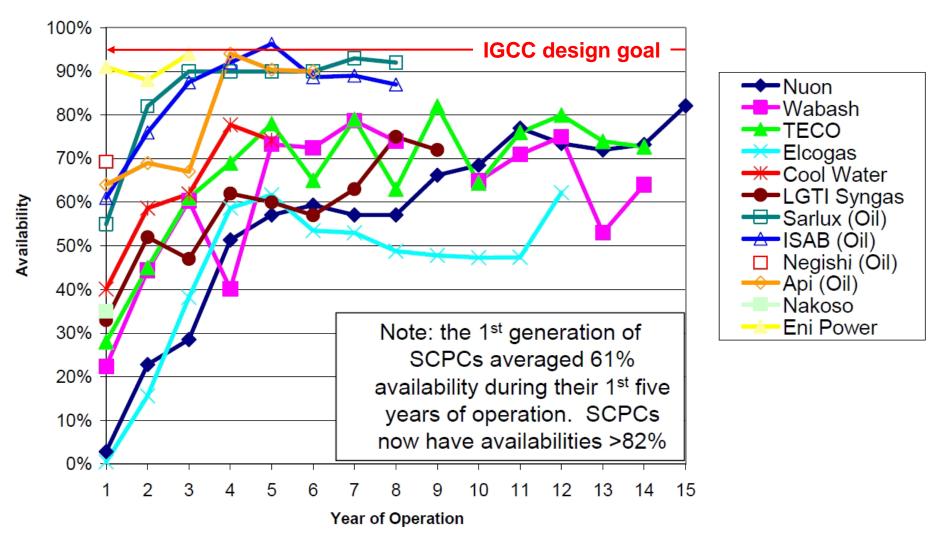
- 250 MWe
- Air-blown
- Entrained flow
- Dry coal feed
- 1,700 tons/day coal

Suited to wide range of coals

Water wall structure

Gas clean-up


MDEA chemical absorption
 Plant startup September 2007


Clean Coal Power R&D Joint project of

- Mitsubishi Heavy Industries,
- Ministry of Economy, Trade and Industry, and
- Several EPC companies

Clean Coal Power R&D IGCC Demonstration Plant Aerial Photo

IGCC Availability History

Excludes impact of operation on back-up fuel

Source: Dr. Jeff Phillips Sr. Program Manager, Advanced Coal, EPRI http://www.gasification.org/uploads/downloads/Workshops/2010/02phillips%20-%20IGCC%20101e.pdf NATIONAL ENERGY TECHNOLOGY LABORATORY

IGCC Plants in the U.S. No Longer Operating

Southern California Edison's Cool Water Coal Gasification Plant – 100 MWe coal (1984-1988)

- 100 Mille Coal (1904-1900)

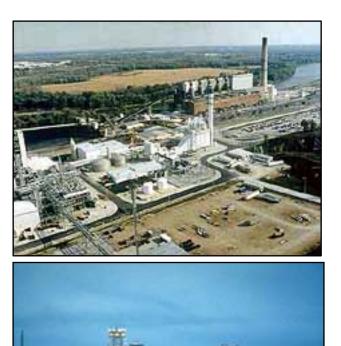
Dow Chemical's Louisiana Gasification Technology Inc (LGTI) Project

- 160 MWe coal (1987-1995)

Valero Delaware City Refinery's Delaware Clean Energy Cogeneration Project

- 160 MWe (& steam) petcoke (2002 - 2009)

IGCC Technology in Early Commercialization


Nation's 1st Commercial-scale IGCC plants Each achieving: > 97% sulfur removal > 90% NO_X reduction

Wabash River

- ConocoPhillips Gasifier
- 1996 Power plant of the Year Award*
- Achieved 77% availability **

Tampa Electric

- General Electric Gasifier
- 1997 Power plant of the Year Award*
- First dispatch power generator
- Achieved 90% availability **

NATIONAL ENERGY TECHNOLOGY LABORATORY

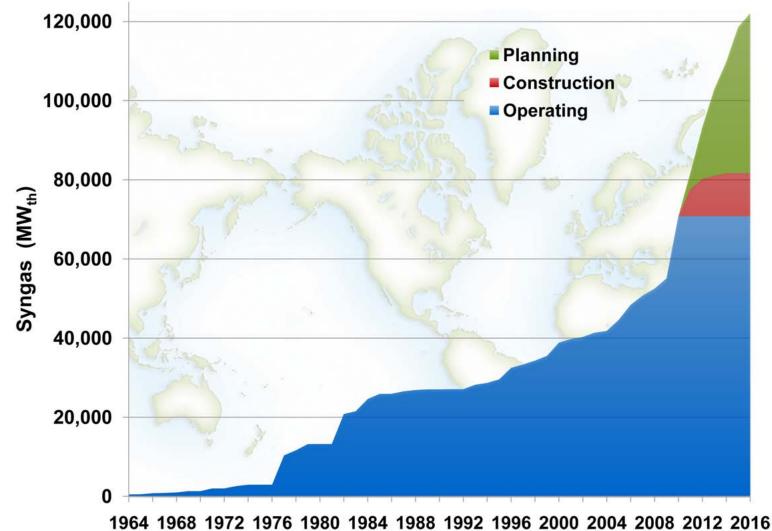
** Gasification Power Block

Coal/Petcoke-Based U.S. IGCC Plants

Operational Performance

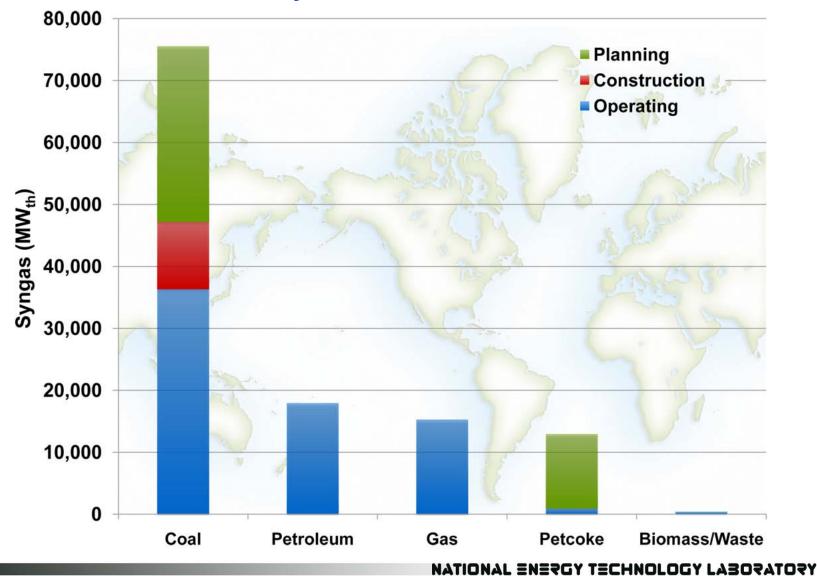
	Cool Water California	LGTI Louisiana	Wabash River Indiana	Tampa Electric Florida	Valero Delaware
Net Power Output MWe	100	160	262	250	240
Efficiency, % (HHV basis)		37.5	40.2	37.5	
Gasification Technology	GE	E-Gas	E-Gas	GE	GE
Feedstock	Bituminous	Low sulfur subbituminous	Petcoke	Coal and petcoke blend	Petcoke
Gas Turbine	GE 107E	2 x Siemens SGT6-3000E	GE 7FA	GE 107FA	2 x GE 7FA
Firing Temp, °F (°C) on natural gas*		2350 (1287)	2350 (1287)	2350 (1287)	
NO _x Control	Steam dilution to combustion turbine	Steam dilution to combustion turbine	Steam dilution to combustion turbine	Nitrogen and steam dilution to combustion turbine	Nitrogen and steam dilution to combustion turbine

* Syngas firing is usually 100-200°F lower

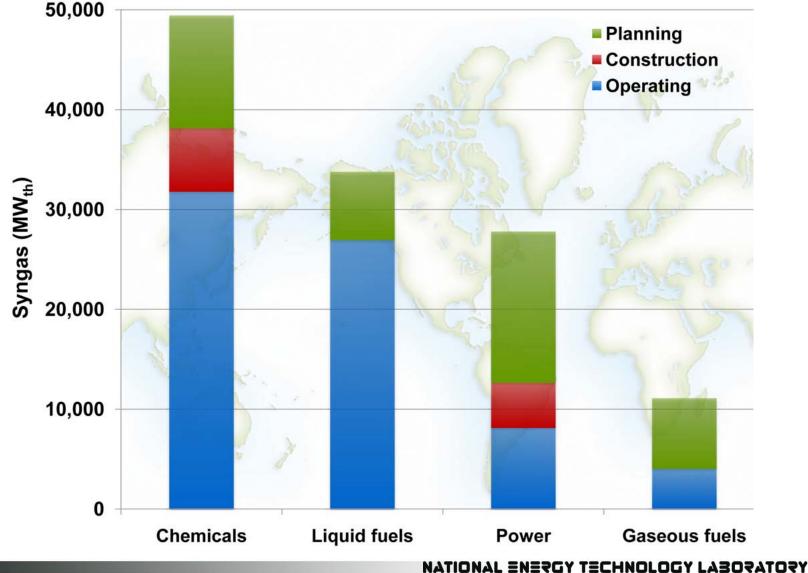


Worldwide Gasification Database

142


Worldwide Gasification Capacity & Planned Growth Cumulative by Year

NATIONAL ENERGY TECHNOLOGY LABORATORY

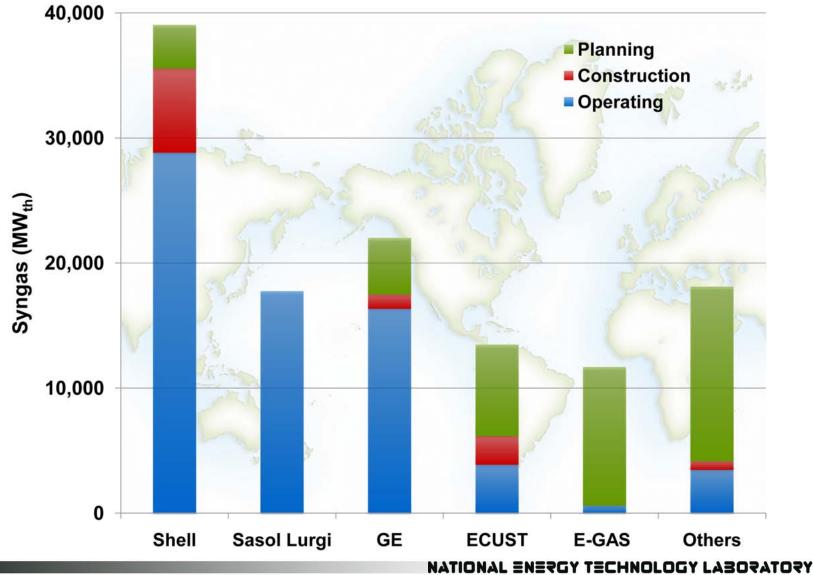

Based on: 2010 Worldwide Gasification Database http://www.netl.doe.gov/technologies/coalpower/gasification/worlddatabase/index.html

Worldwide Gasification Capacity & Planned Growth by Feedstock

Based on: 2010 Worldwide Gasification Database

Worldwide Gasification Capacity & Planned Growth by Product

Based on: 2010 Worldwide Gasification Database


Worldwide Gasification Capacity & Planned Growth by Region

NATIONAL ENERGY TECHNOLOGY LABORATORY

Based on: 2010 Worldwide Gasification Database

Worldwide Gasification Capacity & Planned Growth by Technology

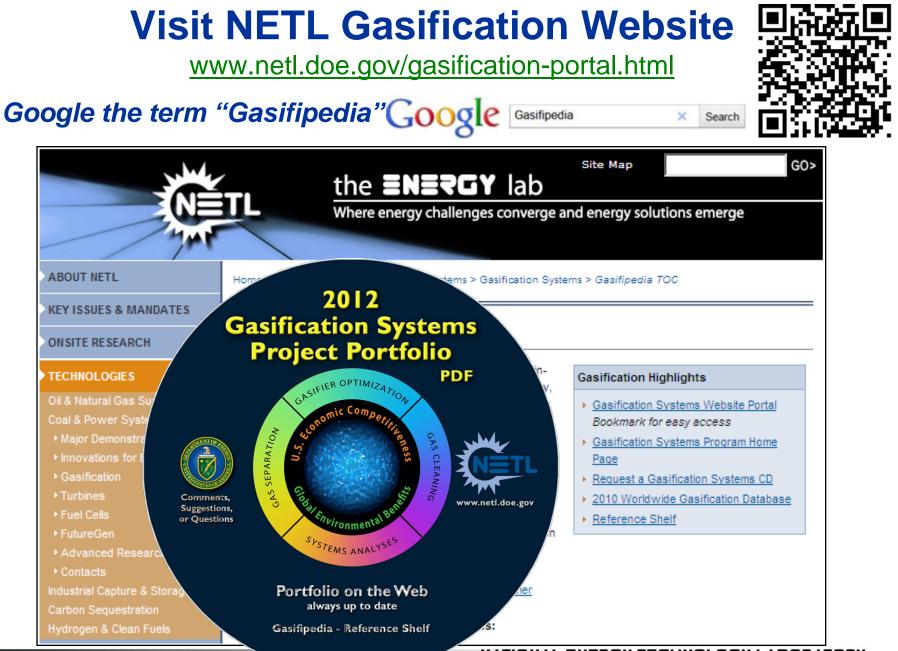
Based on: 2010 Worldwide Gasification Database

Closing

148

NATIONAL ENERGY TECHNOLOGY LABORATORY

... the Benefits


GASIFICATION

- Stable, affordable, high-efficiency energy supply with a minimal environmental impact
- Feedstock Flexibility/Product Flexibility
- Flexible applications for new power generation, as well as for repowering older coal-fired plants

BIG PICTURE

- Energy Security -- Maintain coal as a significant component in the U.S. energy mix
- A Cleaner Environment (reduced emissions of pollutants)
- The most economical technology for CO₂ capture
- Ultra-clean Liquids from Coal -- Early Source of Hydrogen

NATIONAL ENERGY TECHNOLOGY LABORATORY