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Discussion Agenda

• Scope and Overview

• Pilot Project
– Study Area
– Data
– Results and Findings

• Next Steps/Ongoing Work

• Questions/Discussions 
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Source: Ikonnikova, S. (2018). EIA 
Energy Forecasting Forum - April 2018



3

Scope and Objectives
Detailed Analysis of Industry Performance in Marcellus Shale

• Evaluate region-specific industry performance data with 
the goal of identifying R&D needs conducive to improving 
the recovery of oil and gas in unconventional reservoirs.

– Apply regression-style techniques to develop a model capable of 
predicting EUR based on available data parameters. 

– Test several machine learning regression algorithms and assess relevance 
in O&G applications.

– Use sensitivity analysis or other means to quantify the relative 
contribution of each input parameter on productivity.

– Identify most critical research needs and pass that information to 
fundamental researchers.
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Pilot Evaluation – Western Marcellus
Western Marcellus Shale – Wet Gas Region; 2007 Through 

2016 1st Production Year Wells
Type Name Source

G
eo

lo
gy

Surface Hole Latitude DrillingInfo (DI)

Surface Hole Longitude DI

GR Well Logs, DI

Thickness Well Logs, DI, Lit. Review

Ro (VR) Core Data, DI, Lit. Review 

True Vertical Depth DI

First 12m GOR Calculated

Te
ch

no
lo

gy

Perf. Interval Length DI

Total Additive Per ft DI

Total Fluid Per ft DI

Total Proppant Per ft DI

Azimuth DI

Spacing DI

Pad Drilled (Y/N) DI

Prod. First 12m Production DI



Justification for Use of 1st Year Production

• Not a 
predicted 
value.

• Explicitly 
measured.

• Strongly 
correlated to 
predicted 
EUR.

• Better 
parameter for 
pilot-testing 
machine 
learning.
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Machine Learning Framework
To Evaluate the Impact of Technology and Geology 

Parameters on Well Productivity
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Modeling Training Results Overview
Western Marcellus Predictive Model

• Nine algorithms with various 
parameter combinations (up to a total 
of 14) were tested in this study to 
compare model performance.

• Non-linear algorithms performed 
better, indicating complexity in 
predicting production.
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Assessing Parameter Impact on Accuracy
R2 Loss Evaluation on Down-Selected Parameter Set



Pilot Study Conclusions
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• Publicly available data can be used to develop reasonably 
performing regression models that can predict well 
productivity.

• Geology and technology parameters are needed in 
combination, in order to fully explain variance in well 
productivity.

• There is a need for expanded data sets, both in number of 
samples and in number of parameters in each sample.

• Early sensitivity analysis shows that there is room for 
optimization in all wells analyzed.



Next Steps/Ongoing Work
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Expanded Study Area and Well Counts

11

More data could 
reduce training vs. 

validation gap
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Expanded Evaluation – Marcellus Shale
Marcellus Shale – 2007 Through 2017 1st Production Year Wells

Type Name Source

G
eo

lo
gy

Surface Hole 
Latitude DrillingInfo (DI)

Surface Hole 
Longitude DI

GR, Porosity, Res, 
Den Well Logs, DI

Thickness Well Logs, DI, Lit. Review

Ro (VR) Core Data, Lit. Review 

True Vertical Depth DI
Upper, Lower, All 
Marcellus Well Logs

First 12m GOR Calculated

Te
ch

no
lo

gy

Perf. Interval Length DI

Total Additive Per ft DI

Total Fluid Per ft DI

Total Proppant Per ft DI

Azimuth DI

Spacing DI

Pad Drilled (Y/N) DI

Prod. First 12m Production DI



Expanding the Geologic Dataset
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• Well log interpretation completed to assess geologic factors 
across play.

14

Preliminary – Geologic Assessment
Isopach and Thermal Maturity
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Recovery Factor (RF) Assessment
Marcellus Shale – West Virginia

• RF is the ratio of the 
EUR of a specific entity 
(i.e., well, lease area, or 
play) divided by the total 
in-place resource. 

• Acquire OGIP data. 
• Evaluate RF for areas totally 

developed or nearly 
developed. 

• Use info to inform the 
regression analysis if possible.

• Analyze the data parameters 
to determine their individual 
impact on well productivity 
(EUR) and RF.

• Collaboration with the West 
Virginia Geologic Survey. 

Boswell, R. 2017 - Recovery Efficiency in UOG Development



Desired data sets
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• Only partial understanding can be attained from publicly-available data/information alone.
– State reporting requirements strongly influence data availability and quality across plays

• Expanded datasets would enable for refined models, and enable better determination of 
parameters influencing production.

• Desired datasets:
– Well logs (i.e. .las files)
– Completion-related information (i.e. stage count, total perforations, and pressures)
– Additive type, proppant size and type
– Well orientation (toe-up vs. toe down; % in zone)
– Well spacing
– Pre-stimulation pay-zone pore pressures
– Geochemical and geophysical data
– Natural fracture extent
– Others…
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Questions ?
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Backup Slides
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Impact of Correlated Parameters on Accuracy
Water and Proppant Correlation

• Volumes of water and proppant injected were found to be strongly 
correlated.

• Should either of the two parameters be excluded in model training, the 
other compensates, suggesting that neither parameter has importance.

• But, when both parameters are removed, the test scores drop 
considerably.
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Variation in Parameter Impact on Accuracy
Comparison of Different Studies Predicting Production
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Optimization of Well Design
Modifying Additive, Fluids, and Proppant per Perforated Interval Length

• Most wells in the 
preliminary test showed that 
the design can be improved.

• Increasing parameter values 
does always yield best 
results.

• Additive was decreased to 
optimize well design for a 
case-study well.
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Production Performance Summary
Marcellus Shale – All Wells (2007 – 2017)
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Well Completion/Design Summary
Marcellus Shale – All Wells (2007 – 2017)
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Recovery Factor (RF) Assessment
• RF is a concept not readily applied to 

UOG.
• EUR is a function of the marriage of 

technology and geology.
– Technology changes with time (future 

>>> past).
– Geology changes with location (core 

>>> margins).
– Assessments can get EUR very wrong 

for either (both) reasons.

• In-place volumes subject to great 
uncertainty.

• RF is better with gas. Also better with 
depth/pressure.  

• RF is likely better than we think in core 
areas and worse than we think at the 
margins.

• Minor improvements in RF can be 
directly translated into immense and 
tangible economic and national security 
benefits.

25

Sandrea and Sandrea, OGJ, 2014

ARI/AEO, 2013



Shale Well Production Economic Model
• Well spacing/design 

typically based on 
spacing patterns that 
yield the highest NPV.

• Coupling data-driven 
predictive model with 
cash flow model 
enables economic 
evaluation of 
well/pad/lease 
optimization.

• Enables comparison of 
improving recovery 
(DOE mission) vs. 
maximizing 
profitability/NPV 
(Industry mission).
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Influencing Factors
 Well spacing and SRV.
 Well interference.
 Over-capitalized field development.
 Economic vs. technically recoverable.
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Parameter Overview by Well Vintage
Average Values
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Predictive Models for 12-mo Productivity
Comparative Analysis

[1] Montgomery and O’Sullivan, Spatial variability of tight oil well productivity and the impact of technology, Applied Energy 195 (2017)
[2] Ikonnikova, S., Vankov, E., Gülen, G., Browning, J., “Understanding Shale Resource Production: What are the Key Variables?” presented at SPE/IAEE 

Hydrocarbon Economics and Evaluation Symposium, Houston, Texas, United States, 2016.
[3] Ikonnikova, S., Vankov, E., Smye, K., Browning, J., Gülen, G., Tinker, S., McDaid, G., Scanlon, B., “Evolution of Shale Oil and Gas Drilling Technology and 

its Implications,” Bureau of Economic Geology (BEG), The University of Texas at Austin, Houston, Texas, United States, 2018 (Draft).
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Geology
Differences Between Coordinates and Geology (gamma ray, thickness, Ro)

• Algorithms trained exclusively with 
either (1) spatial coordinates, or (2) 
GR, thickness, and Ro.

• Production varies spatially, likely 
due to changes in geologic quality.

– Most studies use coordinates (lat/long) 
as a proxy for geology.

– For this study, the geologic assessment 
enabled extrapolation of geologic 
parameters to entire study area.

– Extrapolation imposes less certainty 
than explicit well-specific 
measurements.

• Results indicate that geologic 
parameters acquired (despite 
extrapolation) have similar test score 
trend as using coordinates.
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Effect of Spacing
“Distance to Nearest Well” and “Pad Drill”

• Accuracy remains after 
removing both spacing 
related parameters.

– It is known that wells can 
interfere when drilling too 
close to each other.

• Possible conclusions:
– Noisy data about well 

spacing (i.e., not accurately 
reflecting well spacing).

– Wells in the dataset are at 
spacings that are not 
causing interference or “frac
hits.”

• R&D Pursuit: Evaluation 
of optimal spacing in 
Marcellus to maximize 
production and improve 
RF.

– Parent/Child well impacts.

Note: This baseline does not include coordinates and azimuth 



Desired Datasets

• Only partial understanding can be attained from publicly available 
data/information alone.

– State reporting requirements strongly influence data availability and quality across plays.
• Expanded datasets would enable for refined models, and enable better 

determination of parameters influencing production.
• Desired datasets:

– Well logs (i.e., .las files)
– Completion-related information (i.e. stage count, total perforations, and pressures)
– Additive type, proppant size and type
– Well orientation (toe-up vs. toe down; % in zone)
– Pre-stimulation pay-zone pore pressures
– Lateral trajectory data
– Geochemical and geophysical data
– Natural fracture extent
– Others… 31
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Methods to Determining R&D 
Needs
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Parameter Impact Assessment
Requires Various Approaches to Extract Actual Parametric Impact

• Removing Fluid or Proppant 
alone does not show significant 
impact to the overall accuracy.

• However, removing both 
parameters shows the real 
impact of fracture fluid and 
proppant.

• This problem is non-linear and 
certain parameters are likely 
collinear and/or have high 
degree interaction.

• Simple one-at-a-time sensitivity 
tests not suitable for identifying 
the parameter importance.

– Monte-Carlo variance-based 
approach. 

– Sobol total index approach
– Decision tree analysis.
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Decision Tree Analysis
Exploration of Parameters that Contribute to “Extreme” Well Performance
• Dataset with low and high 

performing wells.
– <25th percentile (low) 

and >75th percentile 
(high).

• Used key features to 
“classify” wells.

• Preliminary results show 
that:

• All left branches at each node = True, all right branches at each 
node = False.

• gini is a ‘score’ for each node (zero when all cases in a node are 
classified into a single category).

• Value represents number of samples classified into each 
category [Low, High].
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Literature Review
Machine Learning for Unconventional Oil and Gas Applications
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