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Laser-Induced Breakdown Spectroscopy (LIBS) 

Conclusions

A Laser Induced Breakdown Spectroscopy (LIBS) based sensor is developed for
sub-surface water quality monitoring and characterization. The prototype sensor
head was constructed using off the shelf components and a custom, passively Q-
switched (PSQW) laser. The sensor head is fiber coupled to a pump laser and a
time-gated spectrometer, a design that will allow the expensive and fragile
components to remain at the surface while only the low-cost sensor head needs to
enter the hostile downhole environment. Ongoing testing has demonstrated the
validity of the fiber coupled design and has shown the prototype’s performance
matches or exceeds that of traditional benchtop LIBS systems. Applications of
this novel sensor technology include carbon dioxide (CO2) leak detection for
Geologic Carbon Storage (GCS) and Rare Earth Element (REE) source
characterization. Leakage of CO2 from GCS can potentially contaminate the
groundwater aquifers with metals originating either from the high salinity brines
or acid leaching of the formation rocks. Detection of the elevated level of these
proxy metals (e.g., Ca, Sr, K) can be used to provide an early detection of the
CO2 leak. Measurements of aqueous solutions of Ca, Sr, and K showed good
calibration linearity with R2 values over 0.99 and provided excellent Limits of
Detection (LODs) between 10 and 100 ppb. The LOD for REE (Eu and Yb)
ranged between 1 and 10 ppm for liquid and solid samples respectively.
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• LIBS is an atomic emission spectroscopy-based analytical technique to obtain
qualitative and quantitative elemental information of the materials.

• High energy laser pulse creates a micro plasma plume on the sample by
ablating a very small amount of material.

• The ablated material dissociates into excited ionic and atomic species.
• The excited atoms/ions present in the plasma emit light at their characteristic

wavelengths.
• Spectral analysis of the emission spectrum from the plasma is used to infer the

elemental composition of the sample.

 This work validates the design of the downhole LIBS based sensor.
 A fiber coupled prototype sensor head was developed (Fig 2 & 3) and tested.
 Spectral data were successfully collected and analyzed for selected elements

relevant to GCS and REE source characterization (Fig 5, 6, & 7).
 LODs are comparable or better than traditional bench top systems (Table 2 & 3).

 Future work:
 Continue optimization of system performance for other elements relevant to GCS

and the remaining REEs.
 Develop a miniature, pressure resistant prototype for downhole testing.

Ca, Sr, K aqueous solutions
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 Sensor Optical Design
• Telescope (L1 & L2) couples 808

nm pump into Pill Laser.
• Beam Expander (L3 & L4) expands

Pill Laser output 3X.
• Aspheric Lens (L5) focuses Pill

Laser and collects plasma emission.
• Long Wave Pass Dichroic Mirror

(DCM) reflects plasma emission
wavelengths < 900 nm while
passing the 1064 nm pulse.

• Lens L6 couples plasma emission
into fiber.

• Photodiode (PD) generates timing
signal for the spectrometer from
weak 1064 nm reflection off back
surface of DCM. A bandpass filter
(BP) removes residual 808 nm light
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Figure 3: Prototype Sensor 
Head and Schematic

System Overview
• A rugged LIBS based sensor head is build around a custom, PQSW laser for

sub-surface applications.

• The sensor head is fiber coupled to a spectrometer and pump laser. The fiber
coupled design allows these fragile and expensive components to remain on
the surface while only the low-cost sensor head needs to be exposed to the
harsh downhole environment.

Figure 1: System concept. Pump laser, spectrometer, and other
electronics remain on the surface while the all optical sensor head
enters the sub-surface.

Parameter Value

Beam Quality (M2) X-axis = 1.04
Y-axis = 1.55

Pulse Length 3.3 ns
Pulse Energy 4.8 mJ

• The Pill laser is a custom PQSW laser 16 mm in length and 5 mm in diameter, the size
of a pill. Laser performance parameters are listed in Table 1.

• Monolithic design consisting of a Nd:YAG laser crystal diffusion bonded to a Cr:YAG
passive Q-switch (Fig 2).

Table 1: Laser Performance

Figure 4: A – Beam radius (‘w’) as a function of
position (‘z’) near the beam waist (‘w0’). B – LIP in
water without 3X beam expander (Fig 3). C – LIP in
water with 3X expander.

𝑤𝑤0 = 𝑀𝑀2 𝜆𝜆
𝜋𝜋
𝑓𝑓
𝑅𝑅

Equation 1: Beam waist
(‘w0’) dependence on beam
quality (‘M2’), lens focal
length (‘f’), wavelength (‘λ’),
and the incident beam
radius (‘R’).

• To produce a LIP, the irradiance / power density at the focal point (Fig 4A) must be
high enough to exceed the breakdown strength of the sample.

• Multiple factors influence the focused power density such as pulse energy, pulse
length, and focal spot size (i.e. the beam waist ‘w0’) which itself depends on multiple
factors including the incident beam radius “R” (Equation 1)
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Figure 5: Calibration data for three elements relevant
to GCS leak detection. Good linearity was observed for
all elements across the concentration ranges
investigated. Error bars are ±3σ of eight
measurements.

Element Line
(nm)

LOD
(ppm)

Literature LOD
(ppm)

Calcium 422.7 0.10(1) 0.94(2) 0.047(3) 0.13(5)

Strontium 460.7 0.04(1) 2.89(2)

Potassium 766.6 0.009(1) 0.03(2) 1.2(4)

769.9 0.069(1)

Table 2: Limits of detection for Ca, Sr, and K.

REE aqueous solutions and solid pellets

Figure 6: Calibration data for aqueous solutions of Eu and
Yb. Only the atomic (i.e. neutral) emission lines were
analyzed as the ionic lines showed self absorption. Error
bars are ±3σ of eight measurements.

Figure 7: Calibration data for Europium oxide containing
solid pellets. Both atomic and ionic lines showed good
linearity (i.e. no self absorption). Error bars are ±1σ of
eight measurements.

Element Line
(nm)

LOD
(ppm)

Literature LOD
(ppm)

Europium 466.19 1.54(6) 5.0(9)

462.72 1.05(6) 1.9(7) 5.0(9)

459.40 0.85(6) 256(8) 5.0(9)

Ytterbium 398.80 1.15(6) 156(8)

Table 3: Eu & Yb
aqueous solution
LODs

Species Line
(nm)

LOD
(ppm)

Literature
LOD (ppm)

Eu I 466.36 38.6(6) 80(10)

462.72 24.7(6)

459.40 22.4(6) 2.4(11)

Eu II 420.51 10.7(6)

412.94 9.9(6) 100(10)

390.69 26.1(6) 120(10)

382.97 14.3(6)

Table 4: Solid Eu
oxide containing
pellet LODs.
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