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General Approach: Electrochemical CO2 Conversion
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General Approach: Electrochemical CO2 Conversion

Use carbon-free electrons to convert CO2 !
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Designing CO2 Electrocatalysts

• Large energy input or poor efficiency ... Wasted energy = $$$$!

• Large Product Distribution... Separation = $$$$!
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“Coinage” Metal Catalysts
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7J. Am. Chem. Soc. 2012;  J. Phys. Chem. Lett. 2013;  Chemical Science 2014;  ACS Applied Materials and Interfaces 2015;  J. Chem. Phys. 2016; 
ACS Catalysis 2016; MRS Commun. 2017, J. Phys. Chem. C. 2018, US Patent 9,139,920. 

Previous Success with Ligand-Capped Nanocatalysts

Extremely active for CO2 CO

Gold-Copper Nanocatalysts

Retained performance with ~50% reduction in gold

Au25(SR)18 Nanocluster JPCC cover in December 2018

** Just accepted and chosen for JPCC Cover! **

1.5 nm

DOI: 10.1021/acs.jpcc.8b06234
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Nanostructured copper oxides as a starting point
• Previously shown that surface oxides promote CO2 CO

Kauffman et. al. JPCL 2011.                            Li and Kannan JACS 2012                        

Can We Eliminate Precious Metals?

We want
• High surface area & large density of reactive sites
• High concentration of oxide groups
• High porosity for good mass transport
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Nanostructured CuO Inverse Opals

3D opal template                          
(200 nm PMMA colloids on substrate)

Precursor@opal
heterostructure Inverse opal

Phan & Kauffman, et al.;   manuscript in preparation
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Selective and Stable CO Formation
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• ~8x more selective than commercially available CuO powder
• ~10-60x more selective than commercially available CuO nanoparticles

Almost no H2 below -1V , minor CH4 and HCOOH, trace C2

Phan & Kauffman, et al.;   manuscript in preparation
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Selective and Stable CO Formation

Excellent stability during 12-24 hour tests

Phan & Kauffman, et al.;   manuscript in preparation
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Quasi In-Situ XRD (ANL / APS Synchrotron)

copper oxide peaks
reduced copper metal peaks

Catalyst retains significant fraction (~20-30%) of oxides during 6 hour CO2 reduction 

• Ongoing DFT calculations for CO2 reduction 
on Cu-oxide vs Cu

• Provide atomic level details on product 
selectivity

Phan & Kauffman, et al.;   manuscript in preparation
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Transitioning from H-Cell into Gas Diffusion Electrolyzers

Cathode Anode

• CO2 dissolved in 0.1M KHCO3

• Mass transfer & current density limitations
• Not very scalable

CathodeAnode

Humidified  
CO2 gas

• Gaseous CO2 reacted at cathode
• Much higher mass transfer & current density
• Scalable (e.g. electrolyzer stacks)

Very different reaction conditions; process parameters need optimized
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“Bridging the pressure gap”

Combining Electrochemistry and Surface Science

• Well-defined catalysts via 
precisely controlled 
growth: composition, size 
(lateral and vertical), shape

• Characterizations at atomic 
scale possible

• High electrical conductivity

Surface Science

Electrochemistry

+

Tip atoms

Sa  

++

Tip atoms

Sa  

STM

XPS

LEED

• Extremely sensitive to 
surface composition and 
structure

Combination provides exquisite structure-property details

Evaporation

Surf. Sci. 2008, 602, 932.; J. Phys. Chem. C 2009, 113, 11104.; Surf. Sci. 2010, 604, 627; J. Phy. Chem. C 2011, 115, 4163; J. Chem. Phys. 2011, 134, 
104707; J. Am. Chem. Soc. 2011, 133, 10066; J. Phys. Chem. Lett. 2011, 2, 3114; J. Phys. Chem. Lett 2012, 4, 53; J. Phys. Chem. C 2016, 120, 8157; 
J. Phys. Chem. Lett. 2016, 7, 1335; Surf. Sci. 2017, 658, 9; Phys. Chem. Chem. Phys., 2017, 19, 5296; Top. Catal. 2018, 61, 499. 

NETL Surf. 
Sci. Pubs:
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Combining Electrochemistry and Surface Science
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Kauffman , Deng, Sorescu;  Manuscript in preparation

Tafel slope = 75 ± 9 mV dec-1
Iron is 1000s times cheaper than Iridium 

(precious metal … ~ $40k per kg)
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Combining Electrochemistry and Surface Science
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OH to Olattice ratio scales w/ perimeter site density
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Conclusions and future efforts

1. Developing a variety of approaches for catalyst design
• Precise identification of structure-property relationships 
• Couple with DFT modeling 

2. In situ X-ray characterization (XANES, EXAFS, XRD, XPS)
• Provide information on structure and chemical properties during reaction
• Refine DFT models 

3. Incorporate into realistic reactor architectures

4. New concepts (next year’s presentation) … microwave-assisted thermal catalysis
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The End!

Questions or Comments?

We welcome any suggestions and/or collaborations!
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