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Approach to Mixed Matrix Membranes for CO, Capture
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Membranes need very high performance to T L |Ectinotocy
be used in CO, capture from fossil energy

I Challenge: Need to process large amount of gases with low available driving force |
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MMMs can increase membrane performance T L |Ectinotocy
beyond the Robeson Upper Bound
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Assumptions of Robeson UB: pure polymers; 35 °C; pure gas; solution-diffusion
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How do we choose the best pair of ¥E ENERSY
polymer and filler particle? HABORATORY
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Normally filler particles are paired with polymers by chemical intuition
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According to the Maxwell Model, properties of TL [rEctnowoy
the polymer and filler must be complementary HABORATORY

polymer Matrimid CO, Permeability = 10 Barrer

Interface Matrimid CO,/N, selectivity = 30
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Assumptions of Maxwell Model: Filler Particle Permeability (Barrer)
* Resistors in series —e— MMM CO2 Permeability (Barrer) ~ —e—MMM CO2/N2 Selectivity

* No particle agglomeration * Por optimum selectivity, permeability of particle

* Low particle loading, spherical should be < 100X greater than polymer
* Ideal interface

* MMM permeability improvement has limitations
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Computational modeling is used to
predict MOF and MMM properties

MOF Properties Pure Membrane Properties
(Predicted by Calculations) for ~10 polymers

DB of ~137,000 measured experimentally
Hypo-MOFs

DB of ~2,500 MOFs j\ /

CORE-MOFs

Maxwell Eq. o

Predicted Properties Ny N
for well over a million [
possible MMMs '

Estimate of Cost
of Carbon Capture
based on an
assumed configuration
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Carbon Capiure Simuistion far Industry impact
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A database of 137,000 hypothetical MOFs TL [ciorocy
was made by combining MOF building blocks LABORATORY

1: Metal Center . :
2: Organic Linkers Building blocks re-combined

using simple geometrical rules
to create periodic, 3D structures

3: Functional Groups
e.g. —Br, -Cl, phenyl, etc.

* EﬁMERTﬁNTéFY C. E. Wilmer et al., Nature Chemistry, 2012, 4, 83—89.
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The CoRE database details properties of TL fﬁ'{;ﬁ%&%@
MOFs that have been synthesized before

Database Construction High-Throughput

GCMC Simulation
URSH
;2R

Structural CoRE MOF Database

Database

hiiOFs T
CoRE MOF

Cambridge

Methane Uptake

Helium Vaid Fraction

* Automated screening of the Cambridge Structural Database was used to clean
experimentally obtained structure files:

e Solvent molecules removed
e Other disorder removed

* 6,000 structures available in CoRE database
* We have completed calculations on ~2,500 CoRE MOFs




Permeability of MOFs is calculated

based on pore geometry
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Adsorption Selectivity (COZ.’N z)

Grand Canonical Monte Carlo simulations are used
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to calculate CO, and N, solubility for rigid MOFs
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Diffusion Selectivity (CO,/N,)

B

MOFs from the hypothetical and
CoRE databases are analyzed
based on largest cavity diameter
(LCD), pore limiting diameter
(PLD), and surface area
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Molecular dynamics simulations are used to

calculate CO, and N, diffusivity

MOF Permeability = Solubility X Diffusivity
Mixed Matrix Membrane Permeability is from the Maxwell Model
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Predictions of MMM permeability are TL ooy
In good agreement with literature data
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CO, permeability and CO,/N, selectivity Is T L |Ectnotoay
calculated for MMMs with hypothetical MOFs
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* For low permeability polymers, any MOF leads to an increase in permeability
* For high permeability polymers, only some MOFs will cause an improvement in permeability and selectivity
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Compared to pure polymer, MMMs can TL [Estvoroey
dramatically reduce the cost of capture
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CO, removal system:
2 stage membrane
with air sweep
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* Cost Reduction from ~$63 to ~$48 per tonne CO,
* Reduction of ~24%
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Many of the MOFs in the CORE database TL [rEcinoocy
are sorption selective to CO, over H,O
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Henry’s Constants for H,O in CoORE MOFs courtesy of:
Li, S.; Chung, Y. G.; Snurr, R. Q. High-Throughput Screening of Metal-Organic Frameworks
for CO , Capture in the Presence of Water. Langmuir 2016, 32 (40), 10368-10376.
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There are many practical considerations ¥E TECHNOLOGY

for a high performance membrane HABORATORY

High performance Ultra-thin, defect-free
polymer selective layer
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Support with optimum Nano-size MOF with matched
pore size and density properties
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A_ high performance MMM requires a T ENERGY
high performance polymer LABORATORY
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A hollow fiber support needs optimized =

pore density and pore size TL
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Optimum wall thickness
and bore diameter

Higher surface pore density
with optimum pore size

The support should have at least an order of magnitude higher
gas flux compared to selective layer
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What is the max allowable selective layer thickness TL TECHNOLOGY

. LABORATORY
needed to achieve our performance goals?
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Thickness needed for NETL Polymer 3 to achieve 4000 GPU is ~ 600 nm
For the NETL Polymer 3 MMM, the thickness needed is > 1000 nm
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Nano-size MOFs are needed for thin film

coating, and can be achieved

TL
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MOF A, 100-200 nm

MOF B, 100-200 nm




NETL MMMs are above the Robeson Upper

TL
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Bound with high CO, permeability

Recent NETL MMM Results
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* MMMs using NETL Polymer 3 and three different MOFs are all above the Robeson Upper Bound

* Modeling results overpredict the performance of MMMs because of non-idealities that are not

captured by the Maxwell model
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Long term stability of membranes Is TL Ecimoroey
tested with actual flue gas
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| MMMs show stable performance when tested with humidity and contaminants I
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Future work Is to scale up to a small TL [cinowcy
hollow fiber module tested with flue gas
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In-situ MOF growth is a possible scheme for reducing steps
for scale-up manufacturing of mixed matrix membranes
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Summary: NETL has taken a multifaceted approach to N=|Harona
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MMM development for low cost CO, capture TL [rstvorocy
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* For an NETL polymer, the cost of capture can

e  MMMs developed at NETL are above the
be reduced from $61 to $46/tonne CO,

Robeson Upper Bound
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* High permeance hollow fiber supports have

been fabricated - T
e Techniques for thin film coatings are being *  MMMs have been tested at NCCC with real

flue gas and show stable performance
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