

DOE funding award DE-FE0031592

2018 NETL CO₂ Capture Technology Meeting Devin Bostick, Linde LLC August 16, 2018 Pittsburgh, PA

Acknowledgement and Disclaimer

Acknowledgement: This presentation is based on work supported by the Department of Energy under Award Number DE-FE0031592.

Disclaimer: "This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Project Overview

Objectives, Scope, Timeline, Participants & Funding

3

Overview of The Linde Group

Founded

1879

Sales (2017)

\$20 billion

Employees

64,000

Countries

>100

US Linde Gas HQ

Bridgewater, NJ

US Linde Engineering Facilities Tulsa, OK

Holly Springs, GA

Houston, TX

Linde Engineering Technology-focused

Natural Gas

Synergies

CO2 Plants						
>100 plants						

Clefins


Global #2

Global #3

Linde has extensive experience in CO₂ capture & handling

CO₂ Capture and Injection

LNG plant for Statoil in Snøhvit/Norway with CO₂ capture from natural gas and CO₂ re-injection offshore

CO₂ Wash Units

Experience in design & erection of different wash processes for CO₂ removal

- Linde-Rectisol [®]
- BASF Oase techn.[®]
- Benfield

CO₂ Food Grade Plants

Removal of impurities like Hydrocarbons, Heavy metals, O₂, & H₂O for food grade CO₂

CO₂ Transport and Distribution

Long experience in operation of CO₂ plants, transport & distribution

- OCAP pipeline (Netherlands)
- Onsite business
- Bulk supply

Project Objectives

Overall Objective

Demonstrate and evaluate two innovative flue gas aerosol pretreatment technologies identified to significantly reduce high aerosol particle concentrations (>10⁷ particles/cm³) in the 70-200 nm particle size range:

- (1) A high velocity water spray-based system with unique design features
- (2) A novel electrostatic precipitator (ESP) device with an optimized design and operating conditions

Specific Objectives

- Complete an aerosol mechanism literature review and develop a mechanistic model characterizing aerosol formation and interaction with amine solvent in the absorber of a PCC plant
- Design, build, install, commission, and operate the two technologies for flue gas aerosol
 pretreatment at a coal-fired power plant host site providing the flue gas as a slipstream at a flow
 rate of 500-1000 scfm
- Complete parametric testing and analysis of each technology to demonstrate achievement of target performance
- Complete a benchmarking study to identify the optimal aerosol pretreatment system for commercial deployment and integration with solvent-based PCC technology

Project Scope, Timeline & Milestones

				Q3	2018	Τ	Q4 201	18		21 20	019	Q2	2019		Q3 2	2019		(Q4 2019	T	Q1 20	20		Q2 20	20	Τ,	Q3 20	20	Q4 :	2020
	Start	Finish	lun	1111 4	ug Ser	Oct	Nov	Dec	lan	Feb	Mar	Anr	Aay lun		,	110 5	en	Oct	Nov De	lan	Feh	Mar	Δn	r Ma	, ,,,,		ا ا	Sen	Oct	Nov
Budget Period 1		11/30/2018	^		шБГЭСР	3 Oct	c jivov	Dec	Jun	11.00	J IVIUI	I v bi li	na y j san	1 30		Tasl			TIVOVIDE	c Jun		estone		i jiviu	yjou		Comp			
				В												1	ļ	\ L	Jpdated P	MP							e	/29/	18	
1.0: Project management	6/1/2018	11/30/2018	4	D				Г						_		1	E		(ick-Off M		_						7	/27/:	18	
2.1: Mechanism review	6/1/2018	6/29/2018							BI	Ρ1	.: D)esi	gn 8	及		2			Mechanisn					_	plet	e		1/30/		
							C									3			Design & e			comp	olete	•				1/30/		
2.2: Mechanism modeling	7/2/2018	11/28/2018							Er	ng	ine	eri	ng			3	ı.		est plan c						_			1/30/		
3.1: Design basis dev.	6/1/2018	6/29/2018						L								4			abricatior nstallatior							-		/30/: 1/29/		
3.2: Basic engineering	7/2/2018	10/5/2018	1													6	H		Parametrio				_	umpi	e LC			5/1/2		
			1													7			Benchmarl					te				1/30/		
3.3: Detailed engineering	10/8/2018	11/28/2018	-				٠, ـ	_								8			Removal o									1/30/		
3.4: Test planning	10/29/2018	11/28/2018	1				E									_														-
Budget Period 2	12/3/2018	11/29/2019																												
1.0: Project management	12/3/2018	11/29/2019	lг																											
4.1: ESP system fabrication	 12/3/2018	8/30/2019		BP	2: F	-ak	oric	cat	10	n																				
4.2: Spray system fabrication	12/3/2018	8/30/2019		&	Inst	tall	lati	ior	1																					
4.3: Procurement for install	12/3/2018	8/30/2019	<u> </u>																_											
5.1: Site installation	9/2/2019	10/18/2019	_													F														
5.2: Commission & start-up	10/21/2019	11/29/2019																	G											
Budget Period 3	12/2/2019	11/30/2020																												
1.0: Project management	12/2/2019	11/30/2020																												
6.1: ESP system tests	12/2/2019	2/24/2020										Г																		
6.2: Spray system tests	2/17/2020	4/30/2020											BP3	3:	Te	st	in	g												
6.3: Test analysis	5/4/2020	8/28/2020											& A	'n	al	vsi	is	_						Н						
7.0: Benchmarking analysis	8/31/2020	11/27/2020	1										<u>~ / </u>	~	<u> </u>	7														
8.0: Removal of equipment	8/31/2020	11/27/2020																												J

Project Participants

Partner/	Lead contact(s)	Key Role(s)
Organization		
DOE-NETL	Andy Aurelio, Project Manager	-Funding & sponsorship
Linde LLC	Devin Bostick, Principal Investigator Krish Krishnamurthy, Technology Director	-Prime contract -Overall program management -High velocity water spray-based aerosol pretreatment technology owner
University of Illinois Urbana-Champaign (UIUC)	Kevin O'Brien, Project Lead	-Aerosol mechanisms review -Host site liaison -Flue gas and liquid effluent composition measurement & analysis
Washington University in St. Louis (WUSTL)	Pratim Biswas, Project Lead	-Aerosol mechanisms modeling lead -ESP-based aerosol pretreatment technology owner -Characterization of aerosols in flue gas
Affiliated Construction Services (ACS)	Greg Larson, Project Lead	-Procurement management for high velocity water spray-based system -Construction management for site modifications & module installation

Project Budget: DOE Funding and Cost Share

Source	Budget Period 1 Jun 2018 – Nov 2018	Budget Period 2 Dec 2018 – Nov 2019	Budget Period 3 Dec 2019 – Nov 2020	Total
DOE Funding	\$457,822	\$1,290,725	\$1,078,826	\$2,827,834
Cost Share	\$176,612	\$260,949	\$269,860	\$707,421
Total Project	\$634,435	\$1,551,674	\$1,348,686	\$3,534,795

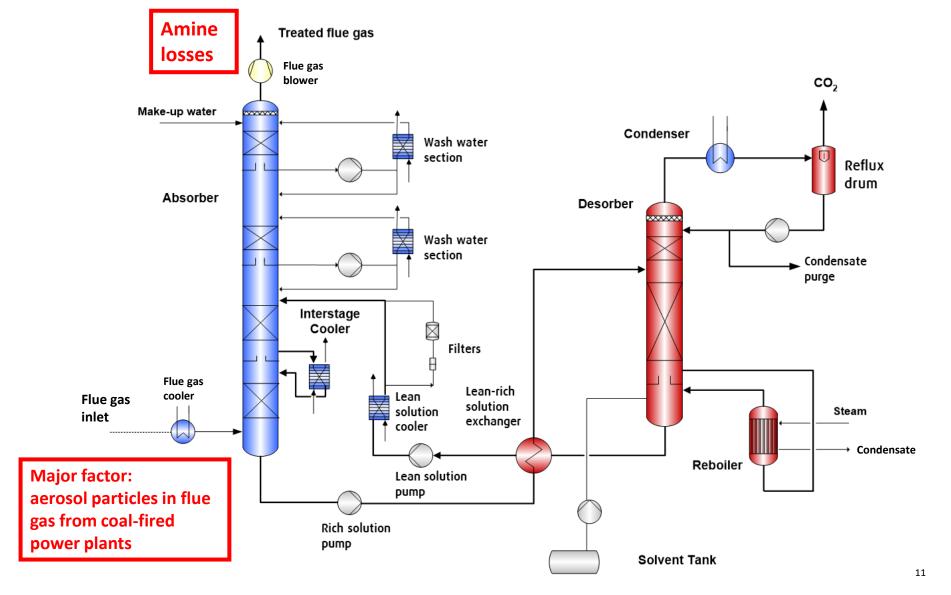
Cost share commitments:

Linde: \$234,869

University of Illinois (UIUC): \$231,339

Washington University in St. Louis (WUSTL): \$191,213

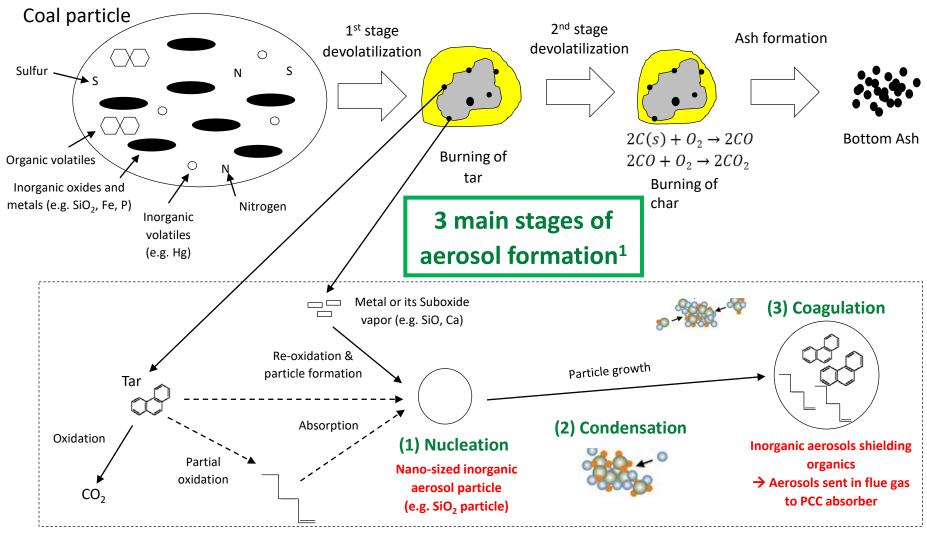
Affiliated Construction Services (ACS): \$50,000



Technology Development

Rationale, Background & Previous Research

Rationale: reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment



Aerosol particle formation during coal combustion

Particle Size

0.4 nm

^{1.} Wang, Xinlei & Williams, Brent & Tang, Y & Huang, Yuhsuan & Kong, L & Yang, Xin & Biswas, Pratim. (2013). Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace. Atmospheric Chemistry and Physics. 13. 10.5194/acp-13-10919-2013.

0.4 - 2 nm

2 - 100 nm

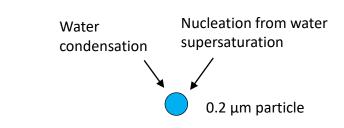
0.001-1000 mm

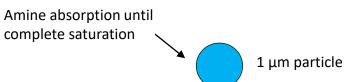
Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers¹

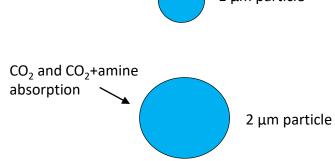
Phase I

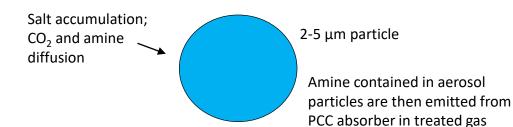
Aerosol growth and nucleation from water in absorber

Phase II


Aerosol growth from amine in absorber


Phase III


Buildup of captured CO₂ and amine bound to CO₂ in aerosols


Phase IV

Salt accumulation inside particles causing further amine and CO₂ diffusion into aerosols

stream

 $d^* = \frac{4\sigma M}{\rho RT ln(p/p_0)}$

The Kelvin equation gives the minimum particle diameter, d*, of a liquid¹ → supersaturation leads to nucleation of smaller particles

^{1.} G. Lombardo, B. Fostas, M. Shah, A. Morken, O. Hvidsten, J. Mertens, E. Hamborg; Results from Aerosol Measurement in Amine Plant Treating Gas Turbine and Residue Fluidized Catalytic Cracker Flue Gases at the CO2 Technology Centre Mongstad, GHGT-13, Energy Procedia 2017; 114: Pages 1210-1230.

Benefits of aerosol particle reduction

Manageable solvent supply and transport logistics

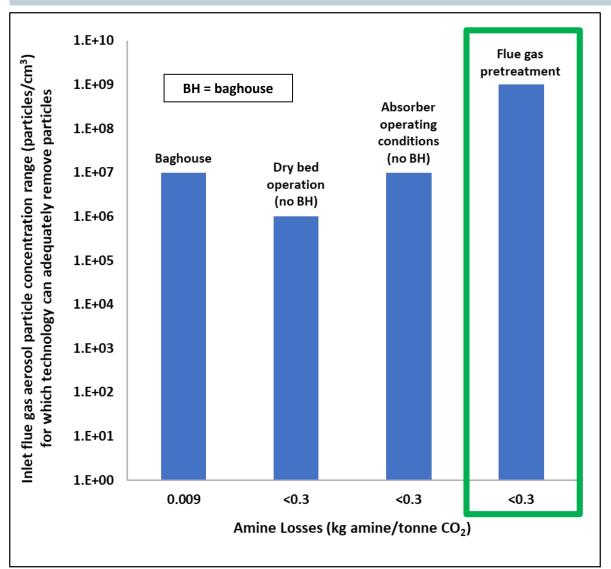
Improved PCC plant business case/lower cost

Optimum power plant efficiency when integrated with PCC

Benefits

Environmental sustainability and performance

Improved PCC plant specific energy performance


Reduction of particulate that can unfavorably react with amine solvent

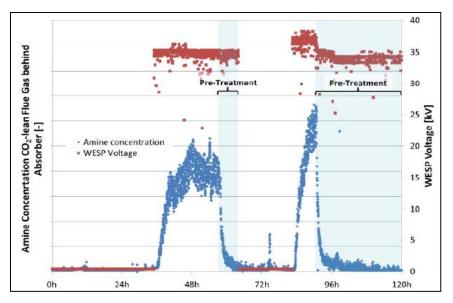
Methods to reduce aerosol-driven solvent losses: Flue gas aerosol pretreatment provides optimum solution¹

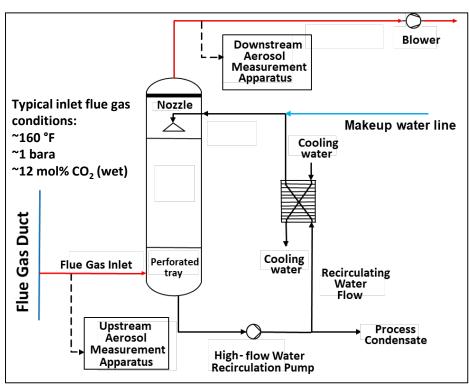
For power plants integrated with solvent-based PCC without an existing baghouse, optimized flue gas aerosol pretreatment is the only viable option to reduce aerosol concentrations from >10⁹ particles/cm³ to manageable levels near 10⁴-10⁶ particles/cm³ for particles with diameters in the range of 70-200 nm.

Pretreatment has traditionally been performed using simple ESPs and Brownian filters.

Few systematic studies have been conducted to evaluate performance of different technologies over a full range of conditions.

High velocity water spray-based aerosol pretreatment technology Developed by RWE & tested in Niederaussem, Germany at lignite-fired coal power plant




Mechanism of action

Water circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes. Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase.

Performance

High velocity spray-based pretreatment reduced amine losses $^{\sim}15\text{-}18$ times during testing at 0.45 MW $_{\rm e}$ PCC pilot in Niederaussum that began in 2009 $^{\rm 1}$.

Tests

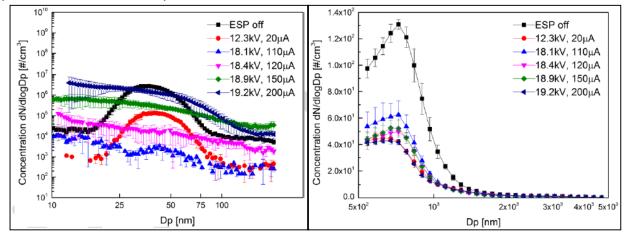
Planned tests will evaluate new nozzle & perforated tray designs and the impact of several operating conditions (flows, temperatures, etc.) on performance.

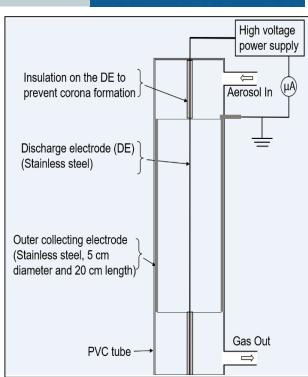
1) P. Moser, G. Vorberg, T. Stoffregen, et. A; The wet electrostatic precipitator as a cause of mist formation – Results from the amine-based post-combustion capture pilot plant at Niederaussem. International Journal of Greenhouse Gas Control, 41 (2015) 229–238.

Advanced ESP-based aerosol pretreatment technology

Developed by Washington University in St. Louis (WUSTL) and tested at NCCC in Wilsonville, AL on 6.5 slpm flue gas sample

Mechanism of action


ESP applies high voltage between plate and wire that ionizes flue gas aerosols. Ionized particles are diverted towards collecting plates for removal. WUSTL's system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency.


Performance

Based on flue gas testing at the Linde-BASF 1.5 MW_e pilot at NCCC in 2016, WUSTL's ESP is expected to provide 98-99% removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m²/(m³/s), which can be increased to remove more particles in the size range of 10-500 nm.¹

Tests

Planned tests will evaluate voltage & current effects and the impact of the photo-ionizer on ESP performance.

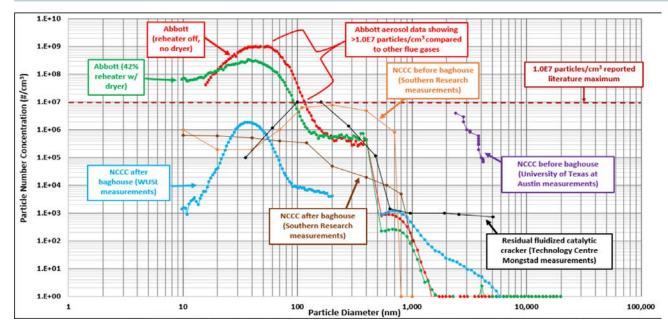
1) Y. Wang, Z. Li, P. Biswas; Aerosol Measurements in Coal Combustor Exhaust Gas on 1.5 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville, AL, Washington University in St. Louis, August 8, 2016.

Economic & technical advantages and potential challenges of each technology

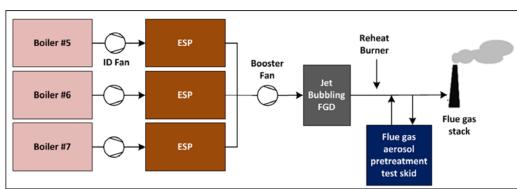
Scenario	DOE-NETL Case B12B: PP* w/ 90% CO ₂ capture**	Case 1: PP* w/ 90% CO ₂ capture; high-velocity spray aerosol pretreatment	Case 2: PP* w/90% CO ₂ capture; novel ESP aerosol pretreatment
Baghouse	Yes	No	No
Added CAPEX w/ aerosol pretreatment (\$)	N/A	\$3,261,720	\$2,338,318
Added energy consumption w/ aerosol pretreatment (MW)	N/A	11	1.32
Total Overnight Cost (\$)	\$2,384,351,816	\$2,356,810,371	\$2,328,373,523
PCC plant specific energy consumption (MJ/kg CO ₂)	2.48	2.48	2.48
Cost of electricity w/o T&S (COE, \$/MWh)	\$133.20	\$133.05	\$131.31
Key advantages	N/A	Manageable footprint & high performance; low CAPEX; can easily be integrated into direct contact cooler of PCC plant	Very small footprint & high performance; low CAPEX & OPEX
Potential challenges	N/A	Higher energy consumption could lead to decreased power plant efficiency	High voltage equipment can pose a safety concern; scale-up of novel components may present issues

^{*}PP: 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation used.

^{**}Baghouses require significant footprint area and power plant retrofit costs including shutdown periods; baghouses also produce a pressure drop so flue gas fan power must be increased; the costs associated with these factors are not included.



Technical Approach


Host Site Setup, Innovation Targets, Success Criteria & Project Risks and Mitigation Strategies

Pilot host site: Abbott Power Plant at UIUC in Champaign, IL

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant schematic and tie-in points to pilot skid

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

Pilot Testing Innovation Targets

Parameter	Rationale	Expected target
Particle removal efficiency* for 500- 1000 scfm flue gas slipstream (%)	Flue gas aerosol particles in size range 70- 200 nm lead to amine losses in the treated gas of amine-based PCC plants	>98%
Cost competitiveness** (COE = cost of electricity)	Reduced capital and operating costs are required for commercial application of enabling technologies for PCC	COE < \$133.20/MWh and cost of CO2 captured < \$58/tonne when compared to DOE-NETL reference case B12B
Energy efficiency**	Low electricity consumption reduces parasitic load for enabling technologies	Energy consumption < 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO ₂ captured)
Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse	Minimal environmental impact is required to meet process safety & regulatory requirements for customers	Process condensate adequately removed & treated as needed; ESP solids removed and treated as needed

^{*}Particle removal efficiency = (Particle concentration before aerosol pretreatment ($\#/cm^3$) - Particle concentration after aerosol pretreatment ($\#/cm^3$)) * 100

^{**} when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Point	Date	Success Criteria
Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation	11/30/2018	 Successful completion of designs, HAZOP/safety reviews and engineering documents that have been accepted by host site and reviewed by NETL Update of costs based on vendor quotes and cost proposal within budget Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL
Installation of aerosol pretreatment systems on site	08/30/2019	Host site is prepared and ready to receive aerosol pretreatment systems for installation
Handover to testing team	11/29/2019	 Successful completion of commissioning activities Close-out of action items related to construction and installation from HAZOPS and safety reviews
Start of testing phase	12/02/2019	 Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL Coal flue gas availability from host site
Project closeout	11/30/2020	Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

Description of Risk	Probability	Impact	Risk Management Mitigation and Response Strategies
Technical Risks:			
Material Compatibility	Low	Medium	Flue gas composition and analysis will be used as part of the design basis. Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling.
Waste Handling	Low	Medium	 Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal. Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust. Solid waste (flue gas particles) is expected to be low.
Flue gas aerosol variability	Medium	Medium	The aerosol control methods being tested are expected to work over wide ranges of aerosol particle concentrations and size distributions.
Plugging process equipment	Low	Medium	The aerosol particle concentration in the Abbott flue gas has been measured. The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems.
Flue gas condition variability affecting aerosol measurements	Low	Medium	Online flue gas analysis (temperature, composition, pressure, humidity, etc.) during testing; team experience handling various flue gas qualities.

Resource & Project Management Risks and Mitigation Strategies

Description of Risk	Probability	Impact	Risk Management Mitigation and Response Strategies
Resource Risks:			Wittigation and Nesponse Strategies
Flue gas and utility non-availability from power plant	Medium	High	 Availability of required utilities will be confirmed with the host site and will be included as part of the design basis. Power plant schedule will be confirmed prior to installation decision.
Unavailability of operators and key individuals with experience and know-how	Low	Medium	 Commitment from all participants to make project successful. Management of all team members' availability and schedule through resource planning. Team members have overlapping skills and knowledge and substitutions are possible.
Project cost overruns	Low	High	 Clear scope definition and specifications sent to vendors and subcontractors for pricing; suitable scope management and limit change orders.
Equipment/module fabrication delay	Low	Medium	 Project schedule includes contingency for delays in procurement or fabrication. Team will select reputable suppliers and obtain firm commitments during purchase order process.
Project Management Risks:			
Poor communication among team members	Low	Medium	 Maintain communication on a regular basis to align team on decision making.
Conflicts among team members	Low	Medium	 Team members have existing relationships from participation in prior projects and have worked well together in the past.

Progress and Current Project Status

Budget Period 1

THE LINDE GROUP

Project Progress: Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1, 2018 – November 30, 2018)

Completed

- Submit updated project management plan (06/29/2018) $\sqrt{}$
- Conduct kick-off meeting with DOE-NETL (07/27/2018) $\sqrt{}$

In Progress (planned completion by 11/30/2018)

- Review and modeling effort of aerosol-driven amine loss mechanisms
- Design, engineering, and cost analysis for pilot skid
- Preliminary test plan drafted

Key Project Milestones (Budget Periods 2 and 3) & Future Plans

Budget Period 2 (December, 2018 – November, 2019)

- Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08/30/2019)
- Complete site installation and commissioning of aerosol pretreatment systems; ensure both systems are ready for testing (11/29/2019)

Budget Period 3 (December, 2019 – November, 2020)

- Complete parametric testing of both aerosol pretreatment systems (05/01/2020)
- Complete technology benchmarking and analysis close-out report based on test results (11/30/2020); complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11/30/2020)
- Dismantling and removal of test equipment and platform (11/30/2020)

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants & economic analysis to accurately understand cost implications when incorporated with PCC technology

Project DE-FE0031592
2018 NETL CO₂ Capture Technology Meeting
Devin Bostick, Linde LLC
August 16, 2018
Pittsburgh, PA

