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Typical Steady-State DOE

Absorber Regenerator

Zhang, et al., Rate-Based Process Modeling Study of 

CO2 Capture with Aqueous Monoethanolamine

Solution, Ind. Eng. Chem Res., 48, 9233-9246, 2009

Luo et al., “Comparison and validation of simulation 

codes against sixteen sets of data from four different 

pilot plants”, Energy Procedia, 1249-1256, 2009 



3

CCSI DOE for National Carbon Capture Center
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Results from 2014 CCSI DOE and Comparison with CCSI Model

RegeneratorAbsorber



Motivation and Goals
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• Collecting a strategic sample of data can:

• Help reach required precision or understanding faster

• Maximize learning with a fixed set of resources or minimize 

required resources for a given learning objective

Goal

• Our goal is to develop a predictive model that can be used for cost-

optimal plant design and operation

• To satisfy this goal, our objective for DOE is:

G-optimality – minimizing the worst prediction variance in 

the design space (minimizing the largest uncertainty 

value for input combinations)

For variables: carbon capture (and lean loading)

Motivations



Issues

6

What was missing in the previous DOE?

• Mainly designed using a space-filling approach without considering the 

output space

• When designed considering the output space, feedback from the 

experimental data are not leveraged to update the DOE

How to solve these issues?

• Develop DOE by taking into consideration the output space by using a 

preliminary process model

• Use a sequential approach to improve DOE as experimental data are 

obtained

Other issues?

• There are uncertainties in the measurements, process model and 

its parameters



CCSI2 Approach to Uncertainty Quantification



Bayesian Uncertainty Quantification Approach



Overall Approach to Design of Experiments: Bayesian 

Sequential Design of Experiments
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Methodology
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Bayesian DOE

Bayesian UQ



Methodology
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Bayesian DOE

Bayesian UQ
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SURROGATE:

➢ Multivariate adaptive regression splines (MARS) were used

➢ Generate a MARS surrogate that maps (෩𝜽𝟏, ෩𝜽𝟐) CO2 capture

Surrogate
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INFERENCE:

➢ For each ෩𝜽𝟐 sample, perform inference to compute posterior over ෩𝜽𝟏
➢ Aggregate ෩𝜽𝟏 posterior samples

Surrogate
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OPTIMAL DESIGN:

➢ Predict confidence intervals 

for candidate designs

➢ Decide which candidate 

designs to choose for exps

Surrogate



UQ

• Train and validate surrogates

• Perform surrogate-based analyses

Surrogate Support
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UQ

• Import experimental data on 

observed variables

• Specify prior distribution on input 

parameters

• Apply surrogate to perform 

inference

• Save sample of posterior 

distribution

Bayesian Inference
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UQ

• Import experimental data on 

observed variables

• Specify prior distribution on input 

parameters

• Apply surrogate to perform 

inference

• Save sample of posterior 

distribution

Bayesian Inference
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Methodology
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Bayesian DOE

Bayesian UQ



• Be efficient about learning from:

– Historical data

– System model

– Expert knowledge and judgement in the domain

– Experiments

• Characterize Carbon Capture systems and models

• Accelerate technology development

Goals for Designed Experiments

23



Design: the settings of experimental conditions. 

Define the settings of interest for experimentation

– Flue Gas Flowrate, G in [1000-3000] kg/hr; 

– CO2 weight fraction, w in [0.125-0.175], i.e. (8.4-11.7 mol% CO2); 

– Lean solvent loading, lldg in  [0.1-0.3] and; 

– Lean solvent flowrate L in [3000-12000] kg/hr

Explore constraints, dependencies, experimental realities. 

NCCC Experimental Design, First step: 
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Initial goal is exploration of the input space

• Criterion used was “minimax” = minimize the largest distance from any point 

in the input space to a design point

Designing NCCC Experiments
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Candidate input combinations
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For NCCC experiment:

• 5 levels of G

• 5 levels of lldg

• 3 levels of w

• 5 levels of L for 

each combination of 

G, lldg and w 

Balance richness of 

potential experiments 

against the computation 

of model evaluation



With the new data from the first batch, the 

model of the process was updated and 

the focus shifted 

– From: exploration of the design 

space and clarifying regions of 

exclusion 

– To: improving the precision of 

prediction for new observations

Update the System Model with Experimental Data

27

Points on line y=x: no 

improvement in precision over 

model with historical data

Points below line: improvement 

in precision (here many of CI 

widths are reduced by ~40%)

original

updated



• With newly updated model, identify the best candidate input combinations to be used as 

the next batch

• 3 additional runs

• Locations selected based on G-optimality (improving the worst prediction in the input 

space), while not putting the new runs too close together (space-filling tendency).

Generate Next Set of Experiments

28

L G w ldg

7971 2500 0.1250 0.3 

9881 2750 0.1417 0.3

1675 2750 0.1750 0.3

3 runs for 2nd batch



Implementation of Methodology for NCCC DOE
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Bayesian DOE

Bayesian UQ



Process Surrogate Model (MARS)
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ො𝐲 = ො𝐲(෤𝐱, ෩𝛉𝟏, ෩𝛉𝟐) y is CO2 capture percentage

Ranges for lean loading and CO2

weight fraction modified to 

accommodate all experimental 

data

෥𝒙 =

𝑳
𝑮

𝜶𝒍𝒆𝒂𝒏

𝒘𝑪𝑶𝟐

Parameters of fixed uncertainty 

(thermodynamic model): ෩𝛉𝟏

Parameters for which uncertainty is 

updated (mass transfer + hydraulics):

3000 ≤ 𝐿 ≤ 13000 𝑘𝑔/ℎ𝑟
1000 ≤ 𝐺 ≤ 3000 𝑘𝑔/ℎ𝑟

0.1 ≤ 𝛼𝑙𝑒𝑎𝑛 ≤ 0.35 𝑚𝑜𝑙 𝐶𝑂2/𝑀𝐸𝐴
0.1 ≤ 𝑤𝐶𝑂2 ≤ 0.175

෩𝛉𝟐



Utility Function
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Absorber Model Performance
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G = 2250 kg/hr



Width of 95% Confidence Intervals
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15 wt% MEA

Lean Loading (mol CO2/MEA)



Implementation of Test Runs at NCCC
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Absorber Performance – Parity Plots
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Beds/Intercoolers Percent Error

3 (2) 5.28 ± 4.42 %

2 (0) 2.75 ± 2.86 %

1 (0) 3.00 ± 1.94 %

Three Beds (With Intercooling) One or Two Beds (Without Intercooling)



Learning from the Experimental Data: Updating Quantified 

Uncertainty
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Effect of Bayesian Inference on CI Width (1st Iteration)
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Candidate Points

Points with 

Experimental Data

Average decrease in CI width (% CO2 Capture): 

1.79 



Next Iteration
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Effect of Bayesian Inference on CI Width (2nd Iteration)
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Test Cases
Case No. L (kg/hr) G (kg/hr) 𝜶𝒍𝒆𝒂𝒏 𝒘𝑪𝑶𝟐

CO2

Capture 

1 7959 2497 0.3 0.118 96.1

2 9871 2746 0.3 0.133 97.7

3 11412 2748 0.3 0.162 94.9

Update in CI Width

Average decrease in CI width (% CO2 Capture): 1.23



Conclusions

40

• Accelerated learning through optimal DOE

• Process model uncertainty has been shown to decrease as process level data 

are incorporated into a Bayesian inference methodology

• Two iterations performed in this work

• Methodology would provide quantitative measure of diminishing return 

(i.e. reduced learning) as optimal experimental data are collected
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