

# Commercialization of an Atmospheric Iron-Based Coal Direct Chemical Looping Process for Power Generation

Project Kick-Off Meeting DE-FE0009761 October 29, 2012

### **Outline**

- > Introduction
- Technology Review
- Project Objectives
- Phase I Activities and Budget
- Phase II Activities and Budget

## **Project Participants**

## Government Agencies:

- DOE/NETL
- ODOD

### Industrial participants:

- The Babcock & Wilcox, PGG
- The Ohio State University
- Clear Skies Consulting











- Relocated to Barberton in November 2006
- Facility inaugurated in August 2007
- Modern laboratories for basic research on clean fuel utilization
- Pilot plants for combustion, oxy-firing, emissions control, and post-combustion CO<sub>2</sub> capture
- Research collaborations with universities,
   National labs, and industry





### Focused by Technology Roadmaps



#### **Progressive Facilities**

- Fundamental Research
- > Lab Scale
- > Pilot scale



Modern
laboratories
with advanced
instruments



Small Boiler Simulator (6 MBtu/hr – 1.8 MW<sub>th</sub>)



RSAT™ post-combustion CO<sub>2</sub> capture pilot (~7 tons CO<sub>2</sub>/day)

## SBS + RSAT<sup>™</sup> Pilot Plant (7 tons CO<sub>2</sub> capture/day)

#### Key Features:

Small Boiler Simulator

 High quality, representative data

Coal flue gas source

 Designed for R&D studies

#### Applications:

- Performance data
- Process optimization
- Accurate mass and energy balances
- Simulation model validation





### The Ohio State University: Clean Coal Research Laboratory

#### **Coal-Direct Chemical Looping**







Sub-Pilot Scale Unit

Pilot Scale Unit w/ B&W

#### **Syngas Chemical Looping**







250-kW<sub>th</sub> Pilot Scale Unit Projected in 2013

#### **Calcium Looping Process**



Sub-Pilot Unit

#### **CCR Process**



120kW<sub>th</sub> Demonstration Unit

#### Other Research

- Process/Reactor Simulation
- Quantum Calculation
- Particle Technology
- Reaction Engineering
- ECVT

Research in various aspects of engineering and science to support demonstration work

### **Outline**

- > Introduction
- Technology Review
- Project Objectives
- Phase I Activities and Budget
- Phase II Activities and Budget

### **Outline**

- > Introduction
- > Technology Review
  - ➤ Concept
  - ➤ Bench and Sup-pilot Scale Demonstrations
  - > Techno-economic analysis
- Project Objectives
- Phase I Activities and Budget
- Phase II Activities and Budget

### **Process Concept**



Reducer: Coal +  $Fe_2O_3 \rightarrow Fe/FeO + CO_2 + H_2O$ 

(endothermic)

Oxidizer: Air + Fe/FeO  $\rightarrow$  Fe<sub>2</sub>O<sub>3</sub> + Spent Air

(exothermic)

Overall:

Coal + Air  $\rightarrow$  CO<sub>2</sub> + H<sub>2</sub>O + Spent Air

(exothermic)

CL Process reduces exergy loss by recuperating the low grade heat while producing a larger amount of high grade heat

### **Coal-Direct Chemical Looping Process for Retrofit/Repower**



Thomas, T., L.-S. Fan, P. Gupta, and L. G. Velazquez-Vargas, "Combustion Looping Using Composite Oxygen Carriers" U.S. Patent No. 7,767,191 (2010, priority date 2003)

## **CDCL OSU Moving Bed Reactor Configuration**



#### **Enhancer Gas**



#### Two-stage moving bed

- Stage I for gaseous volatiles
- Stage II for coal char

Thomas, T., L.-S. Fan, P. Gupta, and L. G. Velazquez-Vargas, "Combustion Looping Using Composite Oxygen Carriers" U.S. Patent No. 7,767,191 (2010, priority date 2003)

## **Modes of CFB Chemical Looping Reactor Systems**

Mode 1- reducer: fluidized bed or co-current gas-solid (OC) flows

Mode 2 - reducer: gas-solid (OC) countercurrent dense phase/moving bed flows





| Reducer                                            | Mode 1                                                       | Mode 2                                           |  |  |  |  |
|----------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|--|--|--|--|
| Operation Regime                                   | Bubbling,<br>turbulent, fast<br>fluidized, or<br>spouted bed | Moving packed,<br>or multistage<br>fluidized bed |  |  |  |  |
| Gas Solid Contacting Pattern                       | Mixed/Cocurrent                                              | Countercurrent                                   |  |  |  |  |
| Controllability on Fuel and OC Conversions         | mixing and gas                                               |                                                  |  |  |  |  |
| Maximum Iron oxide<br>Conversion                   | 1 11 1% ( to Fe <sub>2</sub> () <sub>4</sub> ) 1             |                                                  |  |  |  |  |
| Solids circulation rate                            | High                                                         | Low                                              |  |  |  |  |
| Ash Separation Technique                           | Separation Technique Separate Step                           |                                                  |  |  |  |  |
| Subsequent Hydrogen Production                     | I No                                                         |                                                  |  |  |  |  |
| Particle size, μm                                  | 100-600                                                      | 1000-3000                                        |  |  |  |  |
| Reducer gas velocity*, m/s                         | lucer gas velocity*, m/s <0.4                                |                                                  |  |  |  |  |
| Reactor size for the same fuel processing capacity | Large                                                        | Small                                            |  |  |  |  |
| Hydrodynamics effects on scaling up                | Large                                                        | Small                                            |  |  |  |  |

<sup>\*</sup>Reducer gas velocity calculated at 900 °C, 1 atm

## **Modes of CFB Chemical Looping Reactor Systems**

**Mode 1-** reducer: fluidized bed or co-current gas-solid (OC) flows

**Chalmers University CLC System** 

Mode 2 - reducer: gas-solid (OC) countercurrent dense phase/moving bed flows

**OSU CLC System** 

#### Phase Diagram – Thermodynamic Restrictions





#### **Operating Equation for Moving Bed Reducer**



### **OSU Chemical Looping Process Development**



| Fuel Type          | Fuel<br>Conversion (%) | CO <sub>2</sub> Purity (% |  |  |  |  |  |
|--------------------|------------------------|---------------------------|--|--|--|--|--|
| CO, H <sub>2</sub> | 99.9                   | 99.9                      |  |  |  |  |  |
| CH <sub>4</sub>    | 99.8                   | 98.8                      |  |  |  |  |  |
| Lignite Char       | 94.9                   | 99.23                     |  |  |  |  |  |
| Bituminous Char    | 95.2                   | 99.1                      |  |  |  |  |  |
| PRB                | >97                    | 3                         |  |  |  |  |  |
| Bituminous         | >95                    | -                         |  |  |  |  |  |
| Anthracite         | 95.5                   | 97.3                      |  |  |  |  |  |



More than **300** types of particle tested. A low cost, robust, highly reactive, and O<sup>2-</sup> conductive composite particle is obtained.

Determined operating maximum operating temperature of oxygen carrier for sustained reactivity and recyclability

>300 hours operation with >99% volatile conversion, >95% char conversion

>800 hours operation with >99% coal/syngas conversion with nearly 100% carbon capture







**Fixed Bed Tests** 



**Bench Scale Tests** 



25 kW<sub>th</sub> Sub-Pilot Scale Tests

**Time** 

## **Outline**

- > Introduction
- > Technology Review
  - ➤ Concept
  - ➤ Bench and Sup-pilot Scale Demonstrations
  - > Techno-economic analysis
- Project Objectives
- Phase I Activities and Budget
- Phase II Activities and Budget

### **Fuel Feedstock Studied**

| Fuel Feedstock                | Туре               | Fuel Flow (lb/hr)                        | Enhancer                          |
|-------------------------------|--------------------|------------------------------------------|-----------------------------------|
| Syngas                        | CO/H <sub>2</sub>  | 0.1-1.71                                 | N/A                               |
| Coal volatile/<br>Natural Gas | CH <sub>4</sub>    | 0.1-0.4                                  | N/A                               |
| Coal char                     | Lignite            | 0.7-2.0                                  | CO <sub>2</sub> /H <sub>2</sub> O |
| Coarchar                      | Metallurgical Coke | 0.05-3                                   | $CO_2/H_2O$                       |
|                               | Sub-Bituminous     | 0.05-7.38 <b>(25kW<sub>th</sub>)</b>     | $CO_2/H_2O$                       |
| Coal                          | Bituminous         | 0.05-3                                   | $CO_2/H_2O$                       |
| Coal                          | Anthracite         | 0.2-0.7                                  | $CO_2/H_2O$                       |
|                               | Lignite            | 2.84-6.15 ( <b>20 kW</b> <sub>th</sub> ) | $CO_2$                            |
| Biomass                       | Wood pellets       | 0.1                                      | $CO_2$                            |

- Combined >800 hours of sub-pilot SCL and CDCL operational experience
- Successful results for all coal/coal derived feedstock tested

## 25 kW<sub>th</sub> Sub-Pilot Demonstration

- Fully assembled and operational
- 500+ hours of operational experience
- 200+ hours continuous successful operation
- Smooth solid circulation
- Confirmed non-mechanical gas sealing under reactive conditions
- 13 test campaigns completed

### 200 hour Sub-Pilot Continuous Demonstration

#### Purpose of long run:

- Determine the feasibility of long-term coal injection on the flowability and reactivity of the oxygen carrier particles in the system.
- More accurately understand the dynamics of the system in hot condition
- Further ability to troubleshoot potential problems and how/why they occur

|                      | Fuel Feed (lb/hr) | Energy Value (kW <sub>th</sub> ) |
|----------------------|-------------------|----------------------------------|
| Metallurgical Coke   | 1.3 – 2.9         | 5.3 – 15.3                       |
| Powder River Basin   | 1.3 - 7.4         | 4.5 – 25                         |
| North Dakota Lignite | 2.9 – 6.1         | 9.3 – 19.7                       |

#### **Results:**

- System able to sustain 200 hours of circulation with no major issues
- Reactivity of the oxygen carrier particle maintained over hundreds of cycles

### 25 kW<sub>th</sub> Sub-Pilot Demonstration – Sample Data

#### **200-hour Continuous Demonstration**



## Metallurgical Coke Performance - Sample Data







- Low volatile and high carbon contents
- ~20-hour operation
- Avg. 80% carbon conversion in reducer
- High Purity CO<sub>2</sub> concentration
  - Negligible CO and CH<sub>4</sub> observed
- Low CO/CH<sub>4</sub> Concentration in Combustor outlet
  - No carbon carry-over from reducer

### 200+ Sub-Pilot Continuous Run - Sample Results Lignite

#### **Once-Through Reducer Carbon Conversion Profile**



## Continuous steady carbon conversion from reducer throughout all solid fuel loading (5- 25kW<sub>th</sub>)

- <0.25% CO and CH<sub>4</sub> in reducer outlet = full fuel conversion to CO<sub>2</sub>/H<sub>2</sub>O
- <0.3% CO, CO<sub>2</sub>, and CH<sub>4</sub> in combustor = negligible carbon carry over, nearly 100% carbon capture

#### **Reducer Gas Concentration Profile**



#### **Combustor Gas Concentration Profile**



## **Outline**

- > Introduction
- > Technology Review
  - ➤ Concept
  - ➤ Bench and Sup-pilot Scale Demonstrations
  - > Techno-economic analysis
- Project Objectives
- Phase I Activities and Budget
- Phase II Activities and Budget

## **Process Simulation and Analysis**

#### **Systems Analysis Methodology**

- Performance of CDCL plant modeled using Aspen Plus<sup>®</sup> software
- Results compared with performance of conventional pulverized coal (PC) power plants with and without CO<sub>2</sub> capture
  - U.S. Department of Energy, National Energy Technology Laboratory; Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity (November 2010)
    - Case 11 Supercritical PC plant without CO<sub>2</sub> capture ("Base Plant")
    - Case 12 Supercritical PC plant with MEA scrubbing system for post-combustion CO<sub>2</sub> capture ("MEA Plant")
- All plants evaluated using a common design basis
  - 550 MW<sub>e</sub> net electric output
  - Illinois No. 6 coal: 27,113 kJ/kg (11,666 Btu/lb) HHV, 2.5% sulfur, 11.1% moisture as received
  - Supercritical steam cycle: 242 bar/593°C/593°C (3,500 psig/1,100°F/1,100°F)
  - ≥ 90% CO<sub>2</sub> capture efficiency (MEA and CDCL Plants)
  - CO<sub>2</sub> compressed to 153 bar (2,215 psia)
- Results are preliminary, will be used to guide further design improvements

## **Process Simulation and Analysis**



## **Aspen Plus® Modeling Results**

|                                                  | Base<br>Plant    | MEA<br>Plant       | CDCL<br>Plant     |
|--------------------------------------------------|------------------|--------------------|-------------------|
| Coal Feed, kg/h                                  | 185,759          | 256,652            | 207,072           |
| CO <sub>2</sub> Emissions, kg/MWh <sub>net</sub> | 802              | 111                | 28                |
| CO <sub>2</sub> Capture Efficiency, %            | 0                | 90.2               | 97.0              |
| Solid Waste, a kg/MWh <sub>net</sub>             | 33               | 45                 | 43                |
| Net Power Output, MW <sub>e</sub>                | 550              | 550                | 548               |
| Net Plant HHV Heat Rate, kJ/kWh (Btu/kWh)        | 9,165<br>(8,687) | 12,663<br>(12,002) | 10,248<br>(9,713) |
| Net Plant HHV Efficiency, %                      | 39.3             | 28.5               | 35.2              |
| Energy Penalty, <sup>b</sup> %                   | -                | 27.6               | 10.6              |

<sup>&</sup>lt;sup>a</sup>Excludes gypsum from wet FGD. <sup>b</sup>Relative to Base Plant; includes energy for CO<sub>2</sub> compression.

## First-Year Cost of Electricity

|                               | Base<br>Plant | MEA<br>Plant | CDCL<br>Plant |
|-------------------------------|---------------|--------------|---------------|
| First-Year Capital (\$/MWh)   | 31.7          | 59.6         | 44.2          |
| Fixed O&M (\$/MWh)            | 8.0           | 13.0         | 9.6           |
| Coal (\$/MWh)                 | 14.2          | 19.6         | 15.9          |
| Variable O&M (\$/MWh)         | 5.0           | 8.7          | 8.7           |
| TOTAL FIRST-YEAR COE (\$/MWh) | 58.9          | 100.9        | 78.4          |



## **Outline**

- > Introduction
- Technology Review
- Project Objectives
- Phase I Activities and Budget
- Phase II Activities and Budget

## **Project Objectives**

- To evaluate the commercial viability of the CDCL Technology
  - Conduct minimal testing to support the commercial design
  - > Develop a commercial plant design concept
  - Perform a techno-economic evaluation of the CDCL process
  - Identify technology gaps
  - Develop a preliminary design and budget estimate for a phase II pilot plant experimental facility
  - ➤ Submit Phase II application and final report

## **Outline**

- > Introduction
- Technology Review
- Project Objectives
- Phase I Activities and Budget
- Phase II Activities and Budget

# Commercial Plant Design: 550 MW<sub>e</sub>



## **Proposed Concept**



#### Two-stage moving bed

- Stage I for gaseous volatiles
- Stage II for coal char



- No internal mechanical moving parts
- Packed moving bed design increases oxygen carrier conversion reducing solid flow rate
- In-situ ash separation
- Scalable reactor design
- Simple design no loop seals/carbon strippers

## Approach



## Phase I Schedule

| Phase I. Taskwiczland Francusia Frankustian                  | :        | 2012 | 2  |   |   |   |   | 2013 | 3 |   |   |   |
|--------------------------------------------------------------|----------|------|----|---|---|---|---|------|---|---|---|---|
| Phase I: Technical and Economic Evaluation                   | 10 11 12 |      | 12 | 1 | 2 | 3 | 4 | 5    | 6 | 7 | 8 | 9 |
| Task 1 Project Management and Planning                       |          |      |    |   |   |   |   |      |   |   |   |   |
| 1.1 Project Management                                       | Х        | Х    | Х  | Х | Х | Х | Х | Х    | Х | Х | х | X |
| 1.2 Management Plan                                          | Х        |      |    |   |   |   |   |      |   |   |   |   |
| 1.3 Phase II Application                                     |          |      |    |   |   |   |   | Х    | Х |   |   |   |
| Task 2 Technology and Engineering Design Evaluation Analysis |          |      |    |   |   |   |   |      |   |   |   |   |
| 2.1 Technology Engineering Design Basis                      | X        |      |    |   |   |   |   |      |   |   |   |   |
| 2.2 Develop Reference Conceptual Plant Design                | X        | X    | X  | X | X | X |   |      |   |   |   |   |
| 2.3 Perform Final TechnoEconomic Analysis                    |          |      |    |   |   |   | Х | Х    | Х |   |   |   |
| Task 3 Technology Gap Analysis                               |          |      |    |   |   |   |   |      |   |   |   |   |
| 3.1 Identify Process Technology Gaps                         |          |      |    |   | X | X | X |      |   |   |   |   |
| 3.2 Identify Mechanical Technology Gaps                      |          |      |    |   | X | X | X |      |   |   |   |   |
| Task 4 Support Testing and Analysis                          |          |      |    |   |   |   |   |      |   |   |   |   |
| 4.1 Char Conversion Kinetics and Residence time              | X        | X    | X  |   |   |   |   |      |   |   |   |   |
| 4.2 Determine Coal Distribution Requirement                  |          | X    | X  | X |   |   |   |      |   |   |   |   |
| 4.3 Study and Quantify Particle Attrition                    |          |      | X  | Х | X |   |   |      |   |   |   |   |
| 4.4 Determine Particle Cost                                  |          |      | X  | Х | X | X |   |      |   |   |   |   |
| Task 5 Pilot-Scale Facility Design                           |          |      |    |   |   |   |   |      |   |   |   |   |
| 5.1 Develop Functional Specifications                        |          |      |    |   |   |   | Х | Х    |   |   |   |   |
| 5.2 Develop Budgetary Cost                                   |          |      |    |   |   |   | Х | Х    |   |   |   |   |
| 5.3 Support for Phase II Review                              |          |      |    |   |   |   |   |      |   |   | х | Х |
| Task 6 Final Report                                          |          |      |    |   |   |   |   |      |   |   |   |   |
| 6.1 Prepare Topical/Final Report                             |          |      |    |   |   |   |   | Х    | Х |   |   |   |
| 6.2 In case project is not selected to Phase II              |          |      |    |   |   |   |   |      |   |   | Х | Х |

## Phase I Milestone Log

| Phase I: Technical and Economic Evaluation                        | Start<br>Date | End Date   |    | 201 |    | 2013 |   |   |   |   |   |   | Verification Method |   |                                     |
|-------------------------------------------------------------------|---------------|------------|----|-----|----|------|---|---|---|---|---|---|---------------------|---|-------------------------------------|
|                                                                   |               |            | 10 | 11  | 12 | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8                   | 9 |                                     |
| Task 1 Project Management and Planning                            |               |            |    |     |    |      |   |   |   |   |   |   |                     |   |                                     |
| Kick-Off Meeting                                                  | 10/1/2012     | 10/29/2012 | Х  |     |    |      |   |   |   |   |   |   |                     |   | Presentation File                   |
| Phase I Closeout Meeting                                          | 8/1/2013      | 9/30/2012  |    |     |    |      |   |   |   |   |   |   | Х                   | Х | Presentation File                   |
| Periodic Reports                                                  | 12/1/2013     | 9/30/2012  |    |     | Х  |      |   | х |   |   | Х |   |                     | х | Periodic Report Documents           |
| Closeout Documentation                                            | 8/1/2013      | 9/30/2012  |    |     |    |      |   |   |   |   |   |   | х                   | х | Closeout Documents                  |
| NETL's CO2 Capture Meeting                                        | 7/2/2012      | 8/31/2012  |    |     |    |      |   |   |   |   |   | х | х                   |   | Presentation File                   |
| Upadted Phase I Management Plan                                   | 10/1/2012     | 11/30/2012 | х  | X   |    |      |   |   |   |   |   |   |                     |   | Project Management Plant Document   |
| Phase II Application                                              | 6/1/2013      | 6/29/2013  |    |     |    |      |   |   |   |   | х |   |                     |   | Phase II application Documentation  |
| Task 2 Technology and Engineering Design Evaluation Analysis      |               |            |    |     |    |      |   |   |   |   |   |   |                     |   |                                     |
| Technology Engineering Design Basis Report                        | 10/1/2012     | 10/31/2012 | х  | х   |    |      |   |   |   |   |   |   |                     |   | Design Basis Report Document        |
| Technology Engineering Design Interm Report                       | 3/1/2013      | 3/31/2013  |    |     |    |      |   | х |   |   |   |   |                     |   | Design Interim Report Document      |
| Final Phase I technology Engineering Design and Economic Analysis |               |            |    |     |    |      |   |   |   |   |   |   |                     |   | Design and Economic Analysis Report |
| Report                                                            | 6/1/2013      | 6/29/2013  |    |     |    |      |   |   |   |   | х |   |                     |   | Document                            |
| Task 3 Technology Gap Analysis                                    |               |            |    |     |    |      |   |   |   |   |   |   |                     |   |                                     |
| Go/no Go Descision to continue to Phase II                        | 6/2/2013      | 6/29/2013  |    |     |    |      |   |   |   |   | х |   |                     |   | Issue a go/no-go decision           |
|                                                                   |               |            |    |     |    |      |   |   |   |   |   |   |                     |   | Technology Gap Analysis Report      |
| Final Phase I Technology Gap Analysis                             | 6/2/2013      | 6/29/2013  |    |     |    |      |   |   |   |   | x |   |                     |   | Document                            |
| Task 4 Support Testing and Analysis                               |               |            |    |     |    |      |   |   |   |   |   |   |                     |   |                                     |
| Complete Minimum Required Laboratory Testing                      | 3/1/2013      | 3/29/2013  |    |     |    |      |   | х |   |   |   |   |                     |   | Issue an experimental status report |
| Task 5 Pilot-Scale Facility Design                                |               |            |    |     |    |      |   |   |   |   |   |   |                     |   |                                     |
| Response to questions resulting from NETL review of Phase II      |               |            |    |     |    |      |   |   |   |   |   |   |                     |   | Issue a reply to reviewers          |
| application                                                       | 9/1/2013      | 9/30/2013  |    |     |    |      |   |   |   |   |   |   |                     | х | comments/suggestions                |
| Task 6 Final Report                                               |               |            |    |     |    |      |   |   |   |   |   |   |                     |   |                                     |
| Phase I Topical Report (Draft)                                    | 6/3/2013      | 6/29/2013  |    |     |    |      |   |   |   |   | х |   |                     |   | Topical Report Document             |
| Updating Phase I topical report into Final Report                 | 9/2/2013      | 9/30/2013  |    |     |    |      |   |   |   |   |   |   |                     | х | Final Report Document               |

## Role of Participants: B&W

- 1. Project management and reporting
- 2. Translate experimental data into a commercial design
- Estimate the cost for the commercial plant and auxiliary components
- 4. Perform an economic evaluation of the technology
- 5. Make the go/no-go decision to continue forward
- 6. Commercialize the technology
  - Carry the commercial risks and guaranties
  - Stand behind the final commercial design

## Role of Participants: OSU

- 1. Support B&W on the commercial design
  - Provide process performance data
  - Perform data analysis and interpretation of experimental results
  - Provide know-how on the operation of the system
- 2. Perform process simulations to support economic analysis
- 3. Review final report and provide comments on the economic results

## Role of Participants: Clear Skies

- 1. Coordinate IRC Committee
- 2. Determine particle manufacturing cost and explore cost reduction strategies
- 3. Ensure that the commercial plant design meets DOE targets and addresses IRC concerns.
- 4. Review and provide feedback on design documentation
- 5. Support B&W by providing feedback on quarterly reports and deliverables

## Phase I Budget

| BP1<br>10/1/2012 - 9/30/2013 |               |             |            |             |  |  |  |  |  |  |
|------------------------------|---------------|-------------|------------|-------------|--|--|--|--|--|--|
| Participant                  | Federal Share | State Share | Cost-share | Total       |  |  |  |  |  |  |
| B&W                          | \$408,416     | \$400,000   | \$198,574  | \$1,006,990 |  |  |  |  |  |  |
| OSU                          | \$285,014     |             | \$27,796   | \$312,810   |  |  |  |  |  |  |
| Clear Skies                  | \$68,170      |             | \$12,030   | \$80,200    |  |  |  |  |  |  |
| Total                        | \$761,600     | \$400,000   | \$238,400  | \$1,400,000 |  |  |  |  |  |  |

**Total Project Cost Share of 45.6 %** 

# Thank you

This material is based upon work supported by the Department of Energy under Award Number DE-FE0009761 and DE-NT0005289