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OSU Chemical Looping Evolution
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OSU Coal Direct Chemical Looping Process
200-Hour Continuous Operation at 25kW,,, Sub-pilot Scale
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Scale Up Plan

A Modular Reactor Design

e Chemical looping
inherent low capital cost
technology

* Reduce risks for large
scale-up
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Scale Up Plan

A Modular Reactor Design Challenge: Integrating with Dover Site
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Project Objective

Reduce risks in the CDCL technology development to enable scale-up and eventual
commercialization

BP1 BP2 BP3
1|2|3|4fl1|2|3|4a|1]|2]|3]4

Tasks/Milestones

Project Management and Planning 1. Enable CommerCiaIization

Quarterly Reports

Final Report Preparation

Chemical Looping Combustor Simulation

2.1

Bench Unit Combustor Apparatus Setup

2.2

Oxygen Kinetic Model Dewvelopment and Verification

2.3

Modeling Scheme Including Coupling of Hydrodynamics, Heat Transfer and Reaction

2.4

Pilot and Commercial Scale Combustor Analysis

Milestone 2.1: Combustor Apparatus Ready for Operation

Milestone 2.2: Oxygen Carrier Kinetic Model Developed

Milestone 2.3: Modeling Scheme Coupling of Hydrodynamics, Heat Transfer and Reaction Developed

Heat Exchanger Network Integration and Optimization

3.1

CDCL Static Model Development

3.2

HEN Design with Steam Cycle

3.3

HEN Optimization

3.4

Heat Exchanger Sizing and CDCL 550 MWe Cost Analysis Update

Decision Point 1: Integrated CDCL Systems Analysis Model Developed

Milestone 3.2: HEN Design Deweloped for Cost Analysis

Dynamic Modeling of Integrated CDCL-Steam Cycle System

4.1

CDCL Process Model Development

4.2

Steam Cycle Model Development

4.3

Integrated System Model Development

4.4

System Operation Simulation

Milestone 4.1: Dynamic Model for 10 MWe CDCL Reactor Deweloped

Milestone 4.2: Dynamic Model for 10 MWe Steam Cycle Deweloped

*

Decision Point 2: Integrated Dynamic Model for 10 MWe CDCL Process DevelopedDecision Point 2: Integrated Dynamic Model for 10 MWe CDCL H

2. Enable Scale-Up




Task 2: Combustor Simulation

e CDCL Combustor Model
e USCM Kinetic Model
e MFiX CFD Model

* Design and Analysis of 10MW,
Pilot and 550MW, Commercial
Plant

 Lateral Transport & Mixing
* Oxygen Carrier Conversion
* Heat Transfer
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USCM Kinetic Model MFIX CFD Model

Combustor Performance Model




Task 2: Combustor Simulation
URSM for Fully-reduced Particle  URSM for Partially-reduced Particle

e USCM Kinetic Model

* Extended model to consider
partially-reduced particle .

* Used TGA experiments to ‘" Fe, TiO,
determine rate constants

* Model tested at different
temperature and O, concentration

FeTiO,
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Task 2: Combustor Simulation

800°C, Fully-reduced Particle
* USCM Kinetic Model — =

* Extended model to consider %o Zos
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Task 2 Hydrodynamic Modeling

* MFiX CFD Model of Combustor
* Based on MFiX Two Fluid Model

Air Outlet

—»

* Study the effect of reactor 25 inch
geometry and in-bed heat «— 0.0762m —> b/2 b/2

exchanger on combustor ”@hb*@hb@.}
performance 1 i 8 inch
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O O Of
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30

* Validation by cold flow model with
heat exchanger tubes
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Task 2 Hydrodynamic Modeling

* MFiX CFD Model of Combustor || - . L =aET
 Based on MFiX Two Fluid Model g
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geometry and in-bed heat
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Task 2 Hydrodynamic Modeling

* MFiX CFD Model of Combustor
* Based on MFiX Two Fluid Model

* Study the effect of reactor
geometry and in-bed heat
exchanger on combustor
performance

* Validation by cold flow model with
heat exchanger tubes
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Task 3: HEN Integration and Optimization

 CDCL Process Simulation in
ASPEN Plus
* 550 MW, plant
* In-bed heat exchanger
* Industrial relevant constrains

* Integration with Steam-Cycle
* Multiple heat exchanging surfaces§

Existing equipment

* HEN Optimization
* Cost Estimation

i for repowering case
-

Carrier Particle

Fly Ash and Carrier
Particle Fines i

> Electricity

Makeup (Fe,03)

i Ar
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Task 3: HEN Integration and Optimization
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Task 3: HEN Integration and Optimization
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Task 3: HEN Integration and Optimization

. . . CDCL Preliminary Design
e Coal: lllinois #6

Total Gross Power, MW, 643
e Steam cycle
- Total Auxiliaries, MW 93
» Supercritical cycle e
 24.1 MPa/593 °C/593 °C Net Power, MW, 530
* Adapted based on prior studies from B&W HHV Thermal Input, MW, 1462
e Preliminary results of HHV efficiency s Bl el (2 N
e Baseline: 32.5% St Pant EHICEney 1% '
° . (o)
CDCL process: 37.6% As- Received Coal Feed, kg/hr 194,110
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Task 4: Dynamic Modeling of Integrated Power Plant

Dynamic Modeling in ProTRAX

10 MW, CDCL pilot plant

* Preliminary design from DE-
FE0027654

Existing 20 MW, steam cycle at
Dover, OH

 Based on data obtained from Dover
Light & Power

Startup and operation simulation
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Task 4: Dynamic Modeling of Integrated Power Plant

Boiler Feed Water

| |
I I
From Steam Turbine Island /\ B&W I osu I B&W
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Task 4. Dynamic Modeling of Integrated Power Plant

e Dynamic Model for CDCL

* Mass and Energy Balance

* Hydrodynamic
Correlation

* Chemical Reactions

* Dynamic Model for
Steam Cycle
e Obtained steam cycle

design and parameter
from Dover Light & Power
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Conclusion

Combustor performance model will be developed in this project to support HEN
integration and system dynamic studies

HEN integration and optimization will be performed to enable the commercialization of
the CDCL process

Dynamic modeling will be performed to enable the scale-up of the CDCL process

Kinetic model for oxygen carrier oxidation in CDCL combustor is developed to simulate
the oxidation of fully- and partially- reduced oxygen carrier particles

MFiX CFD model is being developed to study the effect of bed geometry and in-bed
heat exchanger on fluidization properties of the combustor reactor

ASPEN Plus model of 550 MW, integrated CDCL-steam cycle plant is developed for HEN
optimization

ProTRAX dynamic model is being developed for 10 MW, CDCL pilot plant at Dover
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Disclaimer
This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United
States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or any agency thereof.



