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Presentation Outline
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Background & 
Motivation
• Internet-of-Things
• Distributed 

sensing
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Background & Overview of Project
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Task 2: Sensor data schema development and provisioning(Y1)
Task 3: Development of CEP, machine learning (Y1-3)
Task 4: Coupled modeling, UQ, and data assimilation  (Y1-4)
Task 5: System integration and demonstration (Y1-4)

A multi-tier intelligent monitoring system (IMS)



Complex Event Processing
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Data-Driven Anomaly Detection
• Adopt machine learning (ML) 
• Suitable for

– Continuous monitoring
– When physical process is not fully understood
– Automated anomaly detection

• Requirements
– Effective online ML algorithms 
– Labeled training data and expert insights!
– High-performance, integrated computing infrastructure
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Anomaly Detection Case Study
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Cranfield, MS, experiments

Dataset include Pressure and Temperature measurements from 
- Base experiments (no leak)
- Controlled release experiments (artificial leak)
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Problem-Dependent ML

Pressure anomaly
IsolationForest algorithm

DTS anomaly, PCA algorithm
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DIAL-GCS 1.0

Design 1.0:
• Web GIS
• Time series 

management
• A lot custom 

coding
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DIAL-GCS 2.0

Sun et al., under review

Design 2.0:
• Loosely coupled 

web-based stack
• Expandable

ML



Web-Based Monitoring Planning
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Sun et al., 2018, Metamodeling-based approach for risk assessment and cost estimation: 
Application to geological carbon sequestration. Computers & Geosciences.
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Types of metamodeling 
supported:
• Gaussian process 

regression
• Sparse grid



Data-Space Inversion 
(DSI)
What is DSI?
• A new paradigm for long-

term prediction and UQ 
without using history 
matching

• Prior knowledge is used to 
generate possible 
scenarios, but not to 
calibrate model

• DSI combines physically-
based model with ML
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Jeong et al., 2018a, A learning-based data-
driven forecast approach for predicting 
future reservoir performance. AWR.



Deep Learning for Surrogate Modeling
• Deep learning (DL) is a very powerful tool for pattern recognition. 

However it requires a large amount of labeled data for training
• In geosciences, there’s a lot of hype on DL but also many questions
• We developed an innovative DL pipeline for combining DL with physics-

based models
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Single phase 
flow example

Dimensions
128x128

Sun, under review



Optimal Monitoring Network Design
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Objective 
Function

Well cost =
CAPEX($/well)+ 

OPEX($/well/day)+
Intervention($/well)

Leakage cost =
Brine($/ton)+ 
CO2($/ton)

Constraints

# of monitoring 
wells ≤ Nmax

CO2 leakage ≤ M% 
of total injected CO2

∆P at tleakage detection
≥ ∆Pthreshold

Optimization 
toolbox

Binary Integer 
Programming

• Linear problem
• Convex

Optimize 
monitoring 

network

Jeong et al., 2018b, Cost-optimal design of pressure-based monitoring 
networks for carbon sequestration projects, with consideration of geological 
uncertainty, International Journal of Greenhouse Gas Control.
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Optimization 
Toolbox for Pressure 
Monitoring Network

……

Our tool maximizes NPV by considering 
• High uncertainty in geologic models
• Monitoring budget
• Leakage damage cost
• Carbon credit

3D model site scale 
models

<= 45Q Tax Incentives for CCUS



Black: leaky well
Green: injector
Magenta: monitoring well

The optimal monitoring well locations are different because 
heterogeneous permeability affects
• Spatial pressure distribution
• Leakage detection time



Lessons Learned
– We have developed an intelligent monitoring system to help 

generate “intelligent information” and reduce “dark data” 
Applications include

• Web-based monitoring planning
• Pressure-based monitoring network design
• Data space inversion 
• Deep learning tools

– Data-driven machine-learning models are suitable for continuous 
monitoring and anomaly detection and can be used together with 
physics-based models for surrogate modeling

– A viable approach is to combine prior information, expert 
knowledge, and state-of-the-art machine learning tools for 
knowledge discovery and representation
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Accomplishments to Date
– Task 2: Data management

• Year 1: Developed schema and data adaptors for storing, exchanging 
information, and visualizing information

– Task 3: Complex event processing using machine learning
• Year 2: Implemented predictive models on different test datasets
• Year 3: Updated the existing platform for usability

– Task 4: Coupled modeling / data assimilation
• Year 2: Implemented workflow for automating data assimilation. 

Demonstrated Web-based modeling approaches
• Year 3: Focused on ML and DL tool development

– Task 5: Integration and demonstration
• Year 1-3: Experimented with a large number of web-based technologies 

for making the system more user friendly
19



Synergy Opportunities

– DIAL-GCS is an intelligent monitoring system designed for 
anomaly detection, monitoring network design, leakage cost 
estimation 

– Most tools are web-based, or can be readily converted to web-
based, for CCS decision support needs
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Project Summary

– Developed and improved DIAL system

– All tasks are on revised schedule

– Next steps
• Formalize data transformation and work flow
• Improve web-based monitoring network design
• Experiment with different data-driven models and data types
• Provide useful web services
• Provide deep learning based web service
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Appendix
– These slides will not be discussed during the presentation, but 

are mandatory.
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Benefit to the Program 

• Carbon storage program goals being addressed
Develop and validate technologies to ensure 99 percent storage permanence

• Expected benefits of this IMS Project
– Transform scientific knowledge to decision power and public knowledge
– Promote data sharing and visual analytics
– Better collaboration among team members
– Public outreach
– Streamline CCS data management and decisionmaking
– Facilitate the optimal allocation of monitoring resources 
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Project Overview  
Goals and Objectives

• Develop GCS data management module for storing, querying, exchanging, and 
visualizing GCS data from multiple sources and in heterogeneous formats
– Success Criterion: Whether a flexible, user-friendly Web portal is set up for 

enabling data exchange and visual analytics
• Incorporate a complex event processing (CEP) engine for detecting abnormal 

situations by seamlessly combining expert knowledge, rule-based reasoning, and 
machine learning

– Success Criterion: Whether a set of decision rules are developed for identifying 
abnormal signals in monitoring data

• Enable uncertainty quantification and predictive analytics using a combination of 
coupled-process modeling, data assimilation, and reduced-order modeling
– Success Criterion: Whether a suite of computational tools are developed for UQ 

and predictive analytics
• Integrate and demonstrate the system’s capabilities with both real and simulated data 

– Success Criterion: Whether the IMS tools developed under Goals A to C are 
integrated, streamlined, and demonstrated for a realistic GCS site
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Organization Chart
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Gantt Chart
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