FACTSHEET FOR PARTNERSHIP FIELD VALIDATION TEST | Partnership
Name | Southwest Regional Partnership on Carbon Sequestration | | | |--|--|--|--| | Contacts: | Name Organization E-Mail | | | | DOE/NETL Project Mgr. | William O'Dowd NETL William.ODowd@NETL.DOE.GOV | | | | Principal Investigator | Reid Grigg / Brian McPherson NMT reid@prrc.nmt.edu / brian@nmt.edu | | | | Field Test Information:
Field Test Name | Paradox Basin, Utah: Aneth EOR-Sequestration | | | | Test Location | Near Bluff, Utah | | | | Amount and | Tons Source | | | | Source of CO ₂ | 150,000 tons/year; CO ₂ sourced from McElmo Dome, CO | | | | Field Test Partners
(Primary Sponsors) | Resolute Natural Resources Company | | | | | Navajo Nation Oil and Gas Company | | | ## **Summary of Field Test Site and Operations** **General Geology and Target Reservoirs:** The Aneth oil field, discovered in 1956, is one of the largest in the nation. Because the field is on Navajo Nation land, mineral royalties go to the Navajo Nation and are utilized in many ways, including a broad scholarship fund. Aneth is located on the McElmo-Cortez CO₂ pipeline system, and the sheer size of the field makes it a possible target for larger-scale sequestration operations. Petroleum production interests were recently purchased from ChevronTexaco and ExxonMobil, and now these interests are jointly owned by Resolute Natural Resources Company (Resolute) and the Navajo Nation Oil and Gas Company. Both companies operate the field together, and the SWP is pleased to partner with Resolute and the Navajo Nation OGC in a combined enhanced oil recovery (EOR) and sequestration pilot test. The Aneth Unit is part of the greater Aneth field and is located in the Paradox Basin of southeastern Utah (Figure 1). Aneth is a stratigraphic trap with fractures and minor faults. The Aneth Unit covers about 16,800 acres of the northern section of greater Aneth and has produced about 149 million barrels of an estimated 421 million barrels of oil in place (Figure 2). Secondary recovery by waterflood started in 1962. The planned CO₂ flood began in August 2007, and since that time almost 110,000 tons have been injected. The pilot test site is located within the Aneth mound complex (Figure 3), which formed on a weak structural nose. The present-day structural relief of about 150 ft is largely the result of differential compaction. The primary CO₂ sequestration target is the Pennsylvanian Desert Creek and overlying Ismay members of the Paradox formation, the primary producers in the Greater Aneth Field. These carbonate strata were Figure 1. Location of greater Aneth and surrounding oil fields of the Paradox Basin. deposited on the southwestern flank of the Paradox evaporite basin, and are laterally equivalent to the more basinward anhydrites and salts. The Aneth Unit was originally developed with vertical wells drilled on 80-acre spacing. The field was infill-drilled in the 1970s to 40 acre spacing. The field has been managed with water injection that began with unitization in the early 1960s. In 1996, Texaco drilled 43 multi-lateral horizontal wells (23 producers and 20 injectors). In 1998, the injectors in section 14 were converted to a CO₂-WAG project to pilot the possibility of a fieldwide CO₂ injection program. # Brief Summary of Target Reservoirs and Seals: - Producing Formations: Desert Creek and Ismay Zones of the Paradox Formation (Pennsylvania). Depth to top approximately 5600 to 5800 ft. Bottomhole temperature ~125°F (Figure 3). - Deepest fresh water aquifer: Navajo Sand (Jurassic) 500 to 1000 ft. - Lithology: limestones, both oolitic and algal. - Type of trap and reservoir geometry: stratigraphic, partly dolomitized algal carbonate mound on a weak structural nose (Figure 4). Figure 2. Units within the greater Aneth field. - Seal and source rocks: The "seal" unit above the sequestration target is the low-permeability Gothic Shale, and the underlying seal is an organic-rich mud deposit, the Chimney Rock Shale (Figures 3 and 4). Both shales are seals as well as original oil source rocks. Oil generation began during the Cretaceous, as these strata were buried to depths greater than 10,000 feet. Later tectonic uplift and gentle structural development had only minor effects on redistribution of the accumulation. - Potential leakage points: Not a strongly faulted reservoir, gross structure is depositional (algal mound). Planned 3D seismic survey may provide details of small-scale faulting, if any. Well spacing in the Aneth Unit is generally at 40 acres. - Pay zone thickness: 130 to 200 ft. Net pay average 50 ft. - **Porosity:** ~10 % - **Permeability:** 5 to 30 millidarcies - Water saturation and water characteristics: 23.3%, salt water 125,000 to 175,000 ppm NaCl concentration Figure 3. Location map of Aneth field and pilot site (left) and representative cross-section (right). The area indicated by "transects" is the location of a profile of CO₂ flux measurements the Partnership conducted in January 2005. Figure 4. Structure map of top of the Desert Creek zone. Data Quality: Most geophysical well logs are available from the Utah Division of Oil, Gas and Mining (DOGM) for the Aneth and other units in Greater Aneth field; only a few mudlogs have been preserved. They consist of 1950s vintage through 1990s logs, both in hard copy and as scanned images; LAS files are generally not available. Well log quality is good to very good. An estimate of 70% of logs have coverage along the length of the entire bore hole, with roughly 30% covering the reservoir section only. Correlation of formation tops is achieved by studying the gamma ray and formation density/compensated neutron logs of each well; porosity is also determined from a variety of well logs. The general petroleum geology of Greater Aneth field has been summarized in numerous publications since the field was discovered. The location of conventional cores through the Paradox Formation reservoir from wells is variable. The UGS has seven cores from Aneth Unit wells. Other cores are either owned by Resolute or unknown. Core-derived porosity and permeability, thin sections, and core descriptions are available from the Utah Geological Survey and Resolute. Cumulative production data and completion reports data is available from DOGM's Web site, including old and abandoned producers. High-quality water well information, ground-water quality, and surface water data is readily available on the Utah Division of Water Rights' website and various publications. **Surface Description and Land Use:** The topography of the area consists of washes and dissected buttes and mesas formed in response to downcutting by the San Juan River. The surface geology of the area consists of rocks of the Cretaceous Dakota Sandstone and Burrow Canyon Formation, and the upper Jurassic Morrison Formation. Quaternary alluvial deposits occur in valleys, washes, and along the floodplain of the San Juan River. The only perennial tributary to the San Juan River is McElmo Creek; a few springs are also present. Most of the area is part of the Navajo Indian Reservation, although most of the Aneth Unit sequestration analyses will | be conducted on Bureau of Land Management lands. The largest communities in the area are Montezuma Creek and | | | | | |--|--|--|--|--| | Aneth, with a combined population of about 1000 people. Land use in the area consists of livestock grazing and limited | | | | | | agriculture, which relies on water wells powered by windmills. | December Objectives | | | | | ### Research Objectives **EOR-Sequestration Testing:** The field has the capacity to take delivery of an estimated 20 MMCF per day of CO₂ and re-injection capacity of a similar amount. The CO₂ is sourced from McElmo Dome, and arrives at a pressure of about 2750 psi, which is sufficient to inject it into the wells without compression. For our combined EOR/sequestration program, individual well CO₂ injection rates are planned and expected to approach 300 MCF per day per well. The process of displacing approximately 20% of the reservoir pore volume will take about five to eight years. Carbon dioxide will be injected for a period of several years and the SWP will intensely monitor CO₂ movement for 24 months. Injection commenced in August 2007. State-of-the-art reservoir modeling is being used to simulate flow and chemical processes and forecast ultimate CO₂ storage capacities. Given the previous success of EOR in this and other western U.S. sedimentary basins, our primary research objective of the EOR-sequestration test is to evaluate and maximize efficacy of CO₂ subsurface monitoring technologies, and to improve our ability to track the fate of injected CO₂ and to calculate ultimate storage capacity. Finally, it is our goal to develop a rigorous risk assessment framework that will help identify the optimum storage sites in this and other similar oilfield reservoirs that are ubiquitous throughout the Rocky Mountain western states. #### **Summary of Modeling and MMV Efforts** Table 1 provides a summary of our ongoing and future monitoring activities for the Aneth EOR-sequestration test. Data from these monitoring activities are being used to parameterize state-of-the-art mathematical reservoir models. These models include coupling of multiphase CO₂-groundwater flow, rock deformation, and chemical reactions to evaluate residence times, migration patterns and rates, and effects of CO₂ injection on fluid pressures and rock strain, and effects of chemical diagenesis, including variations in solubility, dissolution, and precipitation. We are also developing state-of-the-art seismic models to assist with optimization of different seismic methods for imaging CO₂ in the subsurface. All methods are 2-D, but we are using 3-D data and models to develop optimized 2-D models. Our first reservoir modeling objective is to elucidate the origin of subsurface brines and the hydraulic communication among different aquifers required to form those brines. This is intended to provide insight about how pressures induced by CO₂ injection might "communicate" hydraulically with other units, and to help identify potential migration pathways. Table 1. Measurement Technologies Employed at Aneth, Utah Test Site Measurement technique Measurement parameters Applications | Water composition | - CO ₂ , HCO ₃ , CO ₃ ²⁻
- Major ions | Quantifying solubility & mineral trapping Quantifying CO₂-water-rock interactions | |-----------------------------------|--|---| | Trais. Composition | - Trace elements | - Detecting leakage into shallow | | | - Salinity | groundwater aquifers | | | - Formation pressure | - Control of formation pressure below | | Subsurface pressure | - Annulus pressure | fracture gradient | | • | - Groundwater aquifer pressure | - Wellbore and injection tubing condition | | | • • | - Leakage out of the storage formation | | | | - Tracking CO ₂ movement in and above | | | - Brine salinity | storage formation | | Well logs | - Sonic velocity | Tracking migration of brine into shallow | | | - CO₂ saturation | aquifers | | | | Calibrating seismic velocities for 2D | | | | seismic surveys | | Time-lapse 2-D seismic | - P and S wave velocity | - Tracking CO ₂ movement in and above | | imaging | - Reflection horizons | storage formation | | | - Seismic amplitude attenuation | D | | | - P and S wave velocity | - Detecting detailed distribution of CO ₂ in | | Vertical seismic profiling | - Reflection horizons | the storage formation | | | - Seismic amplitude attenuation | - Detection leakage through faults and | | Passive seismic | Location magnitude and course | fractures | | monitoring | Location, magnitude and source
characteristics of seismic events | - Development of microfractures in formation or caprock | | monitoring | Characteristics of seistific events | - CO ₂ migration pathways | | | | - Tracking movement of CO ₂ in and | | Electrical techniques | - Self-potential monitoring | above the storage formation | | Licetical techniques | - oen-potential monitoring | - Detecting migration of brine into shallow | | | | aquifers | | | | 343 | | Visible and infrared | - Hyperspectral imaging of land | | | imaging from satellite | surface | - Detect vegetative stress | | | | | | CO ₂ land surface flux | CO₂ fluxes between the land | | | monitoring using flux | surface and atmosphere | - Detect, locate and quantify CO ₂ | | chambers or eddy | Atmosphere | releases | | covariance | Oall near comments | Data at alassata dilassata at CO | | Ocil man annulin s | - Soil gas composition | - Detect elevated levels of CO ₂ | | Soil gas sampling | Isotopic analysis of CO ₂ | - Identify source of elevated soil gas CO ₂ | | | | - Evaluate ecosystem impacts | | | | | ## **Accomplishments to Date** - Baseline and repeat surface fluxes measured. - Baseline reservoir groundwater (brine) compositions assessed. - Interwell tracer test in progress since July 2007. - 3-D reservoir model grids assembled and simulations ongoing. - Surface and subsurface geologic maps and cross-sections refined through new mapping. - Digitizing porosity logs and derived porosity/permeability relationship for core plug analysis. - Injection in Phase I area began in August, 2007. - Injection in MMV area started January, 2008. - Geophone array installed in an observation well, October 2007. - Baseline and first repeat VSP survey completed; basic data processing completed, time-lapse analysis started. - Development of interferometry method developed for VSP using Frio as test bed data set. - Electrical self-potential monitoring underway since November 2007. Data analysis in progress. - Microseismic monitoring (passive seismic) continuous since November 2007 - Microseismic sources reveal significant NW-SE striking reservoir structures in study area - Microseismicity activity was initially sporadic; however event rates are becoming higher and more persistent. - Analysis of Gothic shale seal underway by Terra Tek and Sandia National Labs - Compilation of all injection and production data from MMV study area. ## Summary of Target Sink Storage Opportunities and Benefits to the Region - The Desert Creek Formation is representative of many oil/gas fields throughout the Colorado Plateau, and results will be applicable to many such fields. - Typically, EOR with CO₂ is carried out with an objective to maximize re-production and recycling of CO₂ for further EOR. Among the SWP goals is to maximize sequestration, or leaving CO₂ in the ground rather than recycling, while not compromising efficacy of EOR. ### Cost: Total Field Project Cost: Approximately \$5.5M DOE Share: Approximately \$4.4M or 80% Non-DOE Share: Approximately \$1.1M or 20% # Field Project Key Dates: Baseline Completed: January, 2007 **Drilling Operations Begin: October, 2006** Injection Operations Begin: August, 2007 MMV Events: August, 2007 and ongoing ## **Field Test Schedule and Milestones** Major field operations, including well-drilling, pipeline planning, reservoir engineering and baseline MMV operations, began in winter and spring of 2006. Safety training, initial reservoir model grids, and other essential SWP activities also began during this past year. First injection was originally scheduled for September 2006, but was rescheduled to August 2007, because of permitting delays. A general summary of the SWP's schedule for the Utah project is provided in the Gantt chart below.