ZERO EMISSION FUEL-FIRED POWER PLANT WITH ION TRANSPORT MEMBRANE

Yantovski E.*, Gorski J.**, Smyth B.***, ten Elshof J.****

*) Independent Researcher, Viktoriastr.81, D-52066 Aachen, Germany, <u>iksvotnay@aol.com</u>
**) Rzeszow Univ. of Techn., 35-959 Rzeszow, Poland, <u>gorjan@wp.pl</u>
***) Inst. of Techn., Tallaght, Dublin 24, Ireland, <u>brian.smyth@it-tallaght.ie</u>
****) Univ. of Twente, POB 217, 7500AE Enschede, Netherlands <u>j.e.tenelshof@ct.utwente.nl</u>

ABSTRACT

Firstly, some points in relation to the history of zero-emissions power cycles are highlighted. Amongst the many schemes, only one which deals with the combustion of a fuel in "artificial air" (i.e. a mixture of oxygen and re-circulated carbon dioxide), is selected.

The paper describes this zero-emissions, gas-fired power plant for electricity generation. In previous papers, the oxygen for combustion was supplied by commercially available cryogenic air separation techniques. In this publication, it is supplied by a new and innovative separation technology - Ion Transport Membrane (ITM) Oxygen. The ITM process uses dense, nonporous, mixed-conducting ceramic membranes to separate oxygen from air when the latter is supplied at a temperature between 800 and 900 °C and at a pressure between 15 and 40 bar. The only atmospheric emission from the plant is oxygen-depleted air, which is harmless. A schematic of the power plant, its description, and the results of a computer simulation are reported here. The cycle T-s diagram at a design point (not optimised) is given.

INTRODUCTION

As usual, the description of the problem of CO₂ mitigation to prevent global warming was initiated by some classic papers from authors such as Joseph Fourier, 1827, and Svante Arrhenius, 1896 followed by books from M.I.Budyko¹⁻³, 1973-1980. These books are seldom remembered in modern literature.

The history of the earliest attempts of CO_2 mitigation, including the extraction of CO_2 from the atmosphere, is described in the excellent essay by M.Steinberg⁴. It was at the time of nuclear euphoria: ...*the early days of nuclear power we thought we could generate large*

quantities of low cost electrical energy using nuclear reactors...It turned out that these developments never materialized because nuclear power turned out to be more expensive than we early predicted and of course the **severe safety problems** presented by nuclear reactors put a danger for this approach. (Note, it was stated 9 years before the events of 11th September). In light of the expected fall-off in nuclear power capacity (about 100 GW in the US and a similar figure in Europe), the interest in fossil-fuel-fired **zero emissions power plants** (ZEPP) has greatly increased as these plants could potentially replace old decommissioned power plants, including nuclear ones.

With regard to fossil fuels, we need to be realistic. Fossil fuels are reasonably cheap and plentiful and are a very high-grade energy source. They will certainly dominate the world's fuel energy mix for at least the next half a century. They, in themselves, do not cause pollution – **it is the way in which they are combusted that is the problem.** Many environmentalists wish to ban the use of fossil fuels due to CO_2 emissions and the associated problems of global warming. The authors are very much against this ban. The culprit is not the fossil fuel itself but the wrong use of the fuel. If such fuels are used in ZEPPs, the environment will not suffer.

The development of every new power plant would depend on power cycle selection, schematics and thermodynamic calculations of mass, energy and exergy balances. As it is impossible to violate the mass conservation law, the ZEPP combustion products exist in the same chemical composition as in ordinary power plants. Every atom entering a plant with fuel or oxidizer must leave the plant with emissions, effluents and ash. The only difference is that in the ZEPP, all of the combustion products are in liquid, not gaseous form. In short, the **problem of zero emissions translates into the conversion of emissions to effluents**.

All of the attempts to clean the exhaust gases after combustion by using absorption and/or adsorption methods lead to rather large mass exchangers and **do not** result in zero emissions. These attempts are beyond the scope of the paper. Here, we focus on pre-combustion gas separation, namely schemes which involve fuel combustion in a mixture of O_2/CO_2 followed by CO_2 sequestration.

To our knowledge, the first offer of a zero emissions power unit, the integration of air separation and power generation, with combustion of a gas in O_2/CO_2 mixture, and liquid CO_2 cogeneration, is documented by Degtiarev and Gribovski⁵ in 1967. The only "emission" here

is the cold nitrogen from air separation. The aim of the unit is cogeneration of electric power and carbon dioxide for industry.

As a measure to prevent global warming, the combustion of fuel in an O_2/CO_2 mixture, followed by CO_2 sequestration in the ocean, was proposed by C.Marchetti⁶ in 1979. Here, the mass balance for fuel, oxygen and CO_2 is given.

Some subsequent papers are discussed by Yantovski and Degtiarev⁷ in 1993. Here, the hierarchy of cycles is presented diagrammatically. For each of the two possible re-circulating substances (H₂O and CO₂) the external combustion (Rankine cycle) or internal combustion (ZEPP) branches are identified. The latter is divided by many particular cases. The English version of the schematics are also given⁵. The comparison of known data on cycle efficiencies on the graph "efficiency versus temperature" reveals a much higher efficiency using CO₂ recirculation as opposed to H₂O re-circulation.

The offer by P. Pak⁸ et. al. contains a schematic and description of the ZEPP cycle with carbon dioxide re-circulation. In the scheme however, the need to deflect combustion-born water from the cycle is missed.

Lorentzen and Pettersen⁹ present not only the scheme of ZEPP with gas combustion in an O_2/CO_2 mixture, but also the T-s diagram, which clearly indicates the thermodynamic losses. This offer is based on the great experience of the authors in the use of CO_2 in refrigerators.

P. Pechtl¹⁰ considered the ZEPP cycle with CO_2 re-circulation and gave some figures, confirmed in subsequent papers of other authors. If the efficiencies of an ordinary 500 MW coal-fired power plant and an equivalent ZEPP are compared, the efficiency drops from 38.9 % to 36 %. The liquefaction of CO_2 takes 5.3% of the generated power. Pechtl seems to have been one of the first experimenters to evaluate the demand for CO_2 in world industry to be 1.6 % of the CO_2 released to the atmosphere by power plants. This indicates that if zeroemissions power generation was to be implemented on a global scale, the sequestration of CO_2 would be unavoidable.

Yantovski¹¹ presents, in some detail, the schematics of ZEPP with combustion of natural or coal-derived gas in an O₂/steam mixture, with triple turbine expansion, CO₂ separation for sequestration and **water re-circulation**. Estimation of the cycle efficiency by means of a T-s

diagram, at a temperature of 750 °C before each of the three turbines, gives an efficiency of 37 %. Five years later, exactly the same scheme was patented and used for a large scale project by Clean Energy Systems Inc. They successfully tested the 10 $MW_{thermal}$ combustor of gas in an O₂/steam mixture and are now building a 500 kW demonstration power unit in Antioch.

Bolland and Saether¹² considered ZEPP as a combined cycle: a gas-turbine part with combustion of a fuel in an O_2/CO_2 mixture and a bottoming ordinary Rankine cycle. The reduction of efficiency due to oxygen production and the need for CO_2 compression for transportation, is from 56 % to 41 %. Another scheme in this paper deals with combustion in an O_2 /steam mixture and one-stage steam turbine expansion. The maximal efficiency for a steam-cooled turbine at 1550 K is 38.5%. Many useful figures for the equipment costs are also given.

De Ruyck¹³ proposed the original scheme of ZEPP with the use of water evaporation in a mixture with CO_2 . Extremely high efficiencies of up to 57 % were calculated. These figures, however, were not confirmed in later papers.

Holt and Lindeberg¹⁴ considered an integrated complex comprising a ZEPP with enhanced oil recovery. They concluded that two thirds of the CO₂ produced by combustion in a ZEPP might be returned underground to the same place from where the fuel was extracted.

Van Steenderen¹⁶, in more detail, considered the ZEPP with a combined gas-steam cycle. At 20 bar and 1050 °C at the inlet to the turbine, an efficiency of 44 % is reported.

Yantovski¹⁵ et al. presented the computer simulation of a ZEPP cycle with combustion in an O_2 /steam mix, with triple turbine expansion and water re-circulation as was proposed in Ref. 11. At the highest temperature of 1300 °C before the steam turbines, the efficiency does not exceed 40 %. The reason is the very high evaporation heat of water and the inability to recuperate the large enthalpy of condensing steam.

In the series of papers in Ref. 17, a 10 MW ZEPP cycle is presented with liquid CO_2 cogeneration, the latter being used to enhance oil recovery. At a temperature of 1000 °C (and 40 bar pressure) at the turbine inlet and 565 °C by 240 bar, with CO_2 production of 1.14 kg/s and steam production of 0.93 kg/s, the efficiency reached 48 %. A similar project is now underway by the Aker Co in Norway, which started about 5 years after Ref. 17.

The detailed description of a highly efficient ZEPP cycle with CO₂ re-circulation and gas combustion in an O₂/CO₂ mixture is given in Ref. 18. It is the COOPERATE cycle, CO₂ Prevented Emission Recuperative Advanced Turbine Energy. At CO₂ pressures of 240/60/15/4 bar and a temperature variation of 950-1350 °C, the efficiency range is between 46.9 % and 55.2 %. Here, a literal citation of a statement given in Ref. 19 by DOE-FETC is given: *4) Innovative cycles will be needed to achieve efficiency goals. Potential cycle modification include intercooling, chemical recuperation, massive moisture injection...and reheat combustor. As a reply in Ref. 18, one may see the end sentence: Having looked at the list of statements, p.4) we see that for every reason the COOPERATE cycle should be included into the list.*

The main engineering problem of the COOPERATE cycle was the high temperature and high pressure before the first turbine. Upon consulting with turbine manufacturers, it became apparent that it would be impossible to reach such conditions in the foreseeable future. It led to some sacrificing of the efficiency by eliminating the combustion chamber before the first turbine in the COOPERATE demo cycle²⁰. Here the cycle parameters are quite realistic: about 240 bar at 600 °C and 40 bar at 1300 °C, producing an efficiency of about 50 %. This highly efficient realistic cycle consists of two parts: the high pressure Rankine Cycle (on CO₂) and the low pressure Brayton Cycle (on the same CO₂), which is why it was described as "quasicombined". It is described in detail in the book²⁰ and depicted on the book's front cover. A comprehensive description of almost all such zero-emission cycles can be found in the book by G.Goettlicher²¹. The selected power cycle here belongs to "Process Family II" in the book.

Another problem associated with this cycle is the non-condensable gases in the CO₂ condenser. As a radical remedy, it was proposed²² that CO₂ condensation could be avoided by compressing the CO₂ flow immediately after exiting the cooling tower, without allowing the compression process to cross the saturation line. This version of the COOPERATE cycle was entitled the MATIANT cycle²². Recent detailed calculation of many modifications of the MATIANT cycle, made by Ph. Mathieu et al. have indicated a very large efficiency decline due to cryogenic air separation (about 11.5-14.5 percent points). The reader is referred to Mathieu Ph., Dubuisson R., Houyou S. Nihart R. *New concept of CO₂ removal technologies*

in power generation, www.ulg.ac.be/genienuc/publicat.htm, Fig.4.) Such a penalty does not make the MATIANT cycle competitive. Some new approaches are needed.

Recent advances in the development of dense ceramic membranes for air separation should, in time, replace cryogenic air separation techniques. This will open a new chapter for the development of ZEPPs, which still has no history. Here, oxygen production has a much less detrimental effect on cycle efficiency. It might even be beneficial to the efficiency as an air turbine bottoming cycle.

One example is the $AZEP^{27}$ cycle (Advanced Zero Emission Power) which comprises a novel combustor integrated with a ceramic membrane and a heat exchanger. Here, the simplified CO_2 portion of cycle does not allow a high efficiency to be achieved.

The ZEITMOP²⁸ cycle was developed quite independently of the AZEP cycle and followed the statement by one of the present writers in Ref.25, page 142: ... *"the primary advantage of the membrane reactor approach is...the combination of air separation and chemical reaction in a single high temperature unit"*. The simplest version of the cycle is the gas-fired one. With regard to pulverized coal, we hope that measures recommended and tested for an ordinary combined cycle in Ref. 29 will be valid for the ZEITMOP cycle also. The cycle might be employed to use all types of fossil fuels. The authors believe it represents one of the best options for the substitution of decommissioned power plants from the outset of this new millennium.

MEMBRANE SEPARATION PROCESS

In 1899, Walter Hermann Nernst (1864-1941, Nobel prize in 1920 for the 3rd Law of Thermodynamics - the impossibility to reach zero K) investigated the electrical current between metals and solutions. He observed the current of oxygen molecules through dense ceramics, when heated somewhat. The current of oxygen was similar to the current of electrons in metals under an electrical potential difference. The partial pressure of oxygen played the role of electrical potential. Some years later he discussed this with A. Einstein, and this resulted in the Nernst-Einstein formula:

$$j_{O_2} = \frac{\sigma_i RT}{4Ln^2 F^2} \ln \left(\frac{P'_{O_2}}{P''_{O_2}} \right)$$

Here j_{O_2} is the oxygen flux, F is Faraday's constant, L is the membrane thickness, n is the charge of the charge carrier (= 2), R is the ideal gas constant, T is the absolute temperature, P'_{O_2} is the oxygen partial pressure at the feed surface of the membrane, P''_{O_2} is the oxygen partial pressure at the permeate surface of the membrane and σ_i represents the material conductivity. This expression clearly identifies the natural logarithm of the oxygen partial pressure ratio as the driving force for the oxygen flux.

Here is a literal citation from Ref.23: *The driving force for overall oxygen transport is the differential oxygen partial pressure applied across the membrane. As the ITM membrane is dense and gas tight, the direct passage of oxygen molecules is blocked. Yet oxygen ions migrate selectively through the membrane. Dissociation and ionization of oxygen occurs at the oxide surface at the high pressure side (feed side) where electrons are picked up from accessible (near-) surface electronic states. The flux of oxygen ions is charge compensated by a simultaneous flux of electronic charge carriers. Upon arrival at the low-pressure side (permeate side), the individual oxygen ions part with their electrons and recombine again to form oxygen molecules, which are released at the permeate side.*

It took about a century to bring this discovery to Energy Engineering. To the authors' knowledge, one of the first papers to describe various schemes for adopting ion transport membranes for oxygen production belongs to Dyer²⁴ et al. Here, oxygen production using membrane separation technology for gas-steam power production and internal gasifier integration is described. The authors²⁴ however, have missed the most important opportunity to sweep the oxygen from the permeate side by means of carbon dioxide to increase the driving force for oxygen separation and create the zero emissions power cycle.

When O_2 is separated out from an air stream, the partial pressure of O_2 in the oxygen-depleted air stream decreases. If O_2 on the permeate side of the membrane is not swept away, the O_2 partial pressure increases. This results in a decline in the driving forces for O_2 flux. The solution is either to use a sweeping gas (in our case, CO_2) to sweep away the O_2 on the permeate side, or to bind the oxygen atoms taken from the O_2 molecules, to form molecules of another chemical substance (e.g., using a membrane combustor, where a fossil fuel flows along the permeate side). The question as to which is better, a *separate* membrane reactor to produce "artificial air" and a *separate* combustion chamber, or *combined* air separation and combustion in the permeate side, is still open. This question can only be answered by future tests.

The main problem associated with the ITM reactor is stability. The stability issue can only be addressed by conducting long experiments on suitable test rigs. "Mechanical tests of the porous perovskite support reveals that these could endure an absolute pressure difference of about 30 bar...application of the supports at temperatures close to 1000 °C will reduce its porosity due to non-negligible sinter activity at these temperatures"²⁶. Generally, an ITM reactor will look like a shell-and-tube heat exchanger with the tubes made of alumina substrate combined with a thin layer of membrane material, like perovskites of La, Sr, Co, Fe, and oxygen. Such membrane tubes are presently manufactured by a number of advanced ceramic factories.

CYCLE DESCRIPTION

In the computer simulation presented here an effective algorithm for CO_2 properties is used, based on the Equation of State (EOS) by Span and Wagner. For properties of air, nitrogen, oxygen and the mixture CO_2+H_2O , the modified Peng-Robinson EOS is used. All of the numbers for power and flow rate are given for a fuel flow rate of 1 kg/s. The ZEITMOP cycle presented in Fig. 1 consists of three main loops: circulating CO_2 (components 7, 9, 10, 11 and 12), mixture of CO_2+H_2O (components 3, 6, 7, 10, 12, 13) and air/O₂-depleted air/O₂ branch (components 1, 2, 3, 4, 5, 7) together with the fuel supply system (components 7, 8).

Ambient air enters compressor 1. After compression, it is heated up to around 800 - 900 °C in heat exchanger 3 by the flue gases exiting turbine 6. The hot pressurised air then enters the ITM Oxygen ceramic, 4, which separates the air into an oxygen stream, which penetrates through the membrane, and a relatively high pressure oxygen-depleted air stream. The carbon dioxide after 9 is mixed with oxygen in 4 before being directed to the combustion chamber, 7. The latter is also fed with pressurised natural gas. The hot pressurised oxygen-depleted air stream leaving 4, is expanded in turbine 5 before being discharged to atmosphere. The flue gas mixture of CO₂ and H₂O exiting the combustion chamber (at about 1300 – 1600 °C) is expanded in the low pressure turbine, 6, before being cooled in 3, 10 and 13. At ambient temperature, the water in the flue gas mix is liquid while the CO₂ remains gaseous. The bulk of the water is deflected out of the cycle in 12. Almost pure CO₂ enters the multistaged inter-cooled compressor 11, from where a fraction (some percents) of highly compressed,

supercritical or liquid CO_2 is deflected out of the cycle in 14 to be sequestered or used elsewhere. The major portion of the CO_2 is heated in 10 before being expanded in the high pressure turbine, 9, down to about 15 bar. The CO_2 then enters combustor 7 via 4 in a mixture with oxygen.

Numerical results of a computer simulation are presented in Table 2, where mass flow rates, temperature, pressure, enthalpy and entropy at all of the cycle node points are indicated. The T-s diagram for the cycle, including its air and CO_2 parts, is presented in Fig. 2. The CO_2 part of the cycle is simply a quasi-combined one, described in Ref. 20 and depicted on the front cover of the book. The air-part is a simple Brayton cycle. The calculated efficiency 50% might be increased by some cycle improvements, such as injection of combustion-born water to the entrance of air compressor.

EFFICIENCY VERSUS TURBINE INLET TEMPERATURE

The calculation was performed using a real gas model for the analysis of pure gas components and its mixtures. The well-known forms of the thermal EOS and component additivity rules were used. The condensed water from point 12 is injected into the entrance of the air compressor.

Element	Parameter	Unit	Case stu	Case study			
			1	2	3		
	Turbine inlet temperature	⁰ C	1300	1400	1500		
	Turbine inlet pressure	bar	17.5	17.5	17.5		
CGT	Pressure downstream the turbine	bar	1.1	1.1	1.1		
(CO2-H2O turbine "6")	Temperature downstream the turbine	⁰ C	826.6	913	994.6		
	CO2-H2O exhaust mass flow	kg/s	43.64	43.64	43.64		
	Relative cooling stream	%	5.7	5.7	5.7		
	Turbine isentropic efficiency	%	89	88.5	88		
	Turbine power	MW					
	Turbine electric power	MW	15.7	16.8	18.2		
	Turbine inlet temperature	⁰ C	800	885	965		

Table 1 Results of ZEITMOP Cycle efficiency calculation

DAT

(Depleted air turbine

	Turbine inlet pressure	bar	18	18	18			
	Pressure downstream the turbine	bar	1	1	1			
	Temperature downstream the	⁰ C	301.6	355	397.4			
	turbine							
	Depleted air mass flow	kg/s	27.4	27.4	27.4			
	Turbine isentropic efficiency	%	89	89	89			
	Turbine effective power	MW	15.9	17.1	18.6			
	Turbine inlet temperature	⁰ C	440	470	500			
	Turbine inlet pressure	bar	205	205	205			
CDT	Pressure downstream the turbine	bar	20	20	20			
(CO2 HP	Temperature downstream the	⁰ C	219.6	244	268.3			
turbine "9")	turbine							
	CO2 mass flow	kg/s	38.4	38.4	38.4			
	Turbine isentropic efficiency	%	88	88	88			
	Turbine effective power	MW	8.2	8.6	8.8			
	Compressor inlet pressure	bar	1	1	1			
	Gas inlet temperature	⁰ C	30	30	30			
CDC	Compressor inter-stage/discharge	bar	I/II/III =	6.2/35.5	5/210			
(CO2	pressure	re						
compressor	Gas (CO2) mass flow	kg/s	41.13 41.13		41.13			
"11")	Compressor isentropic efficiency	%	I/II/III =	5				
	Compressor power demand	MW	17	17	17			
	Inter-stage cooling heat stream	MW	13.1	13.1	13.1			
	Compressor inlet pressure	bar	1	1	1			
	Air inlet temperature	⁰ C	15	15	15			
ACC	Compressor discharge pressure	bar	21 21		21			
(air	Inlet air mass flow	kg/s	31	31	31			
compressor	Injected water stream	kg/s	1.55	1.55	1.55			
"1")	Air temperature downstream the	⁰ C	243.7	243.7	243.7			
	compressor							
	Compressor isentropic efficiency	%	87	87	87			
	Compressor power demand	MW	11.9	11.9	11.9			
	Cold stream (CO2) temperature rise	⁰ C	219.7	249.4	279			

CHE

(CO2 heat

exchanger

"10")

	Hot stream (CO2-H2O) temperature	⁰ C	223.6	251.5	279.1	
	change					
	Pinch point temperature difference	⁰ C	14.8	16.2	17.1	
	Cold/hot stream flow ratio	-	0.88	0.88	0.88	
	Heat energy flow in the regenerator	MW	11	12.5	14	
	Regenerator effectiveness (based on	%	92.1	93.3	94.1	
	temp.)					
	Cold stream (CO2) temperature rise	⁰ C	545.1	631.3	709.8	
AHE	Hot stream (CO2-H2O) temperature	⁰ C	377.8	435	487	
(air heat	change					
exchanger	Pinch point temperature difference	⁰ C	26.5	28	29.4	
"3")	Cold/hot stream flow ratio	-	0.746	0.746	0.746	
	Heat energy flow in the regenerator	MW	20.6	24.1	27.4	
	Regenerator effectiveness (based on	%	93.5	94.3	94.4	
	temp.)					
	Inlet stream CO2-H2O gas mixture	kg/s	43.64	43.64	43.64	
SEP	flow					
(H2O	Separated water flow (at 30 ⁰ C)	m ³ /h	8980	8980	8980	
separator	Fluid temperature drop in a	⁰ C	197.8	196.8	196	
"13")	separator					
	Heat flow stream	MW	13.4	13.3	13.1	
			1	2	3	
	CO2 mass flow downstream a	kg/s	41.13	41.13	41.13	
ICC	compressor unit					
(coolers in	Average temperature drop in inter-	⁰ C	~160	~160	~160	
"11")	stage coolers					
	Heat power of two inter-stage CO2	MW	13.1	13.1	13.1	
	coolers					
	Temperature of oxy-fuel combustion	⁰ C	1300	1400	1500	
CGG	products					
(combustion	Basic substrate stream mass	%		<u>.</u>		
chamber	composition	osition CH4/CO2/O2/H				
"7")			3/9.1/.6			

	Combustion products composition	%	CO2/H2O=87/13			
	(per vol.)					
	Fuel (CH4) / oxygen mass ratio	kg/kg	1:3.99			
	ITM feed air mass flow	kg/s	32.55	32.55	32.55	
	Feed air composition (per mole)	%	N2/O2/	H2O=73.	3/19.3/7.4	
ITM	Feed air inlet temperature	⁰ C	800	965		
(oxygen	Feed air pressure at ITM inlet	bar	20.5	20.5	20.5	
separator	Desired O2 production in ITM	kg/s	4	4	4	
"4")	separator					
	O2 partial pressure inside ITM	bar	1.745	1.745	1.745	
	reactor					
	O2 partial pressure on permeate side	bar	0.1	0.1	0.1	
	(assumed)					
	O2 depletion inside reactor part	%	55.9	55.9	55.9	
	O2 molar flux per unit area on		5.7E-3	6.2E-3	6.6E-3	
	permeate side	mole/m				
		² s				
	Surface area of ITM (σ _i =1 S/m,	m ²	2.2E+4	2E+4	1.9E+4	
	L=30µm, n=2)					
	The same surface by O2 lower		1.6E+3	1.5E+3	1.4E+3	
	pressure due to its sweeping by					
	$CO2, p = 10^{-9} bar,$	MW	23	25.5	28.3	
	Net power output in the cycle					
	Thermal cycle efficiency	%	46	50.9	56.5	
	Relative CO2 deflection for		429	387	349	
	sequestering	kg/M				
		Wh				
	Disposed heat output	MW	26.6	26.4	26.3	

One of the most sensitive figures in the table relates to the attainable oxygen flux. This oxygen flux will have a direct bearing on the surface area requirement of the ITM separator, 4. Further experiments of flux density measurements might be conducted on one tube only, which should be relatively inexpensive. If the sweeping effect on the flux density is to be as expected above, the size of ITM separator would be reasonable. The relevant calculations of oxygen fluxes compared with experiments on a small disk-shaped membrane of 1 mm thickness can be seen in Ref. 25, Figs.3.2 and 3.4.

ECONOMICAL GUESS

The guess is based on the two figures from membrane manufacturers:

- the oxygen flux at 900 °C and sufficient partial pressure difference: $j = 1 \text{ gO}_2/\text{m}^2\text{s}$
- the specific cost of the membrane tubes: $c = 1500 \text{ US}\text{s/m}^2$

The chemical equation for the combustion of methane in pure oxygen can be written as: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$. If $H_{methane} = 50 \text{ MJ/kg}$, $M_{methane} = 16 \text{ kg/kmol}$ and $M_{oxygen} = 32 \text{ kg/kmol}$, then the rate of thermal energy flux is given by:

$$H_{\text{methane}} \times \frac{(1 \times M_{\text{methane}})}{(2 \times M_{\text{oxygen}})} \times j = 50 \times \frac{(1 \times 16)}{(2 \times 32)} \times 0.001 = 12.5 \text{ kW/m}^2$$

Here, $H_{methane}$ represents the heating value of methane, and $M_{methane}$ and M_{oxygen} represent the molecular masses of methane and oxygen respectively.

Assuming a thermal efficiency of 50 %, the generated power density is $12.5 \times 0.5 = 6.25$ kW/m².

The specific capital investment in membranes is $\frac{1500}{6.25} = 240 \text{ US}/\text{kW}$, which is about half of today's cost per kW of a gas-fired power plant or a quarter of the cost of a coal-fired one. It seems reasonable.

CONCLUSION

The results of the calculation are encouraging. At the highest cycle temperatures of 1300-1500 °C a cycle efficiency of 46-56 % is attainable. There are a number of ways to increase the cycle efficiency. Further development of the cycle includes its use for zero-emissions transportation engines (turbine and piston), co-generation, decentralised energy supply and a zero-emissions Rankine cycle.

REFERENCES

- Budyko M.I. Atmospheric carbon dioxide and climate. Gidrometeoizdat,1973 (in Russian).
- 2. Budyko M.I. Problem of carbon dioxide gas. Gidrometeoizdat, 1979 (in Russian).
- 3. Budyko M.I ,Climate in the past and future. Gidrometeoizdat, 1980 (in Russian).
- Steinberg M. History of CO2 greenhouse gas mitigation technologies. Energy Conv.Mgmt. V. 33 No5-8, pp 311-315, 1992.
- Degtiarev V.L., Grybovsky V.P. Carbon dioxide semi-closed power plant. Author sertif. USSR No. 295 897 of July 28,1967, published in Bull. Inventions Nov.12, 1971, No8.F01k13/00, Co1b 3/00.
- Marchetti C. Constructive solutions to the CO2 problem. In Man's Impact on Climate, New York, Elsevier 1979.
- Yantovski E., Degtiarev V.L. Internal combustion carbon dioxide power cycles without exhaust gases. Proc. Int. Conf. ENSEC'93, July 5-9,1993, Cracow, Poland.pp595-602.
- Pak P.S., Nakamura K., Suzuki Y. Closed dual fluid gas turbine power plant without emission of CO2 into the atmosphere. Proceedings of IFAC/IFORS/IAEE Int. Symp. on Energy Systems Management and Economics, Oct.1989, pp. 249-254., US Pat. 5,247,791, Sept.28, 1993.
- Lorentzen G., Pettersen J. Power process development for northern climate.
 Eurogas'90. Proc. of the Conf. on Natural Gas., Trondheim, May28-30, 1990, pp. 451-462.
- Pechtl P. CO₂ emissionsminderung. Erdol und Kohle Petrochemie. H.4, Apr.pp159-162, 1991.
- Yantovski E. The thermodynamics of fuel-fired power plants without exhaust gases.
 Proc. World Clean Energy Conf. CMDC, Geneva, 4-7 Nov. 1991, pp571-595.

- 12. Bolland O.,Saether . New concepts for natural gas fired power plants which simplify the recovery of carbon dioxide. En. Conv. Mgmt V33, No. 5-8, pp. 467-475, 1992.
- De Ruyck J., Efficient CO₂ capture through a combined steam and CO2 gas turbine cycle. Ibid. pp. 397-404.
- Holt T., Lindeberg E. Thermal power-without greenhouse gases and with improved oil recovery. Ibid. pp. 595.602.
- 15. Yantovski E., Zvagolski K., Gavrilenko V., Computer exergonomics of power plants without exhaust gases. Ibid. pp. 405-412.
- Van Steenderen P. Carbon dioxide recovery from coal and natural gas fired combined cycle power plants by combustion in pure oxygen and recycled carbon dioxide.
 COMPRIMO Consulting services BV. Amsterdam, 03.03.1992.
- Yantovski E., Wall G., Lindquist L., Tryggstad J., Maksutov R., Oil enhancement Carbon Dioxide Oxygen Power Universal Supply (OCDOPUS project) En. Conv. Mgmt. V34 No. 9-11, pp. 1219-1227, 1993.
- Yantovski E., Zvagolsky K., Gavrilenko V. The COOPERATE power cycle Proc.WAM ASME, AES-Vol 33, pp. 105-112, 1994.
- Bajura R., Well H.A., Parks W.P. Plan for Advanced Turbine System Program. Clemson workshop to define turbine systems research needs. Jan.7-8. 1992, updated version Nov.5, 1992.
- 20. Yantovski E. Energy and Exergy Currents. NOVA Sci.publ. NY, 1994.
- Göttlicher G. Energetik der Kohlendioxidrückhaltung. Reihe 6, No421, VDI-Fortschrittberichte, Düsseldorf, 1999.
- 22. Mathieu Ph. Presentation of an innovative Zero-Emission cycle for mitigation the global climate change. Int.J. of Applied Thermodyn. V.1, No.1-4, June 1998.
- Bouwmeester H., Burggraaf A. Dense Ceramic Membranes for Oxygen Separation. Ch.11 in the CRC Handbook of Solid state Electrochemistry, CRC Press, Boca Raton, 1996.
- 24. Dyer P., Richards R., Russek S., Taylor D. Ion transport membrane technology for oxygen separation and syngas production. Solid State Ionics. 134 (2000), 21-33.
- ten Elshof J.E. Dense Inorganic Membranes. PhD thesis, Uni. of Twente, Enschede, 1997.
- 26. van der Haar M. Mixed-conducting perovskite membranes for oxygen separation. PhD thesis, Uni.of Twente,Enschede, 2001.

- Sundqvist S., Griffin T., Thorshaug N. AZEP-Development of an Integrated Air Separation Membrane-Gas Turbine. Second Nordic Minisymposium on CO2 capture, Göteborg, Chalmers Uni.Oct.26, 2001.
- Yantovski E., Gorski J., Smyth B., ten Elshof J.E. ZEITMOP Cycle (Zero Emission Ion Transport Membrane Oxygen Power) Proc. Int. Conf. ECOS 2002, July 3-5, 2002, Berlin, pp1153-1160.
- 29. Förster M., Hannes K., Telöken R. Combined cycle power plant with pressurized pulverized coal combustion. VGB Power Tech. 9/2001, pp30-35.

Fig. 2 T-s diagram of ZEITMOP Cycle

Table 2 Basic parameters of ZEITMOP	P cycle at node points
-------------------------------------	-------------------------------

Stream:	1	2	3	4	5	6	7	8	9	10	11	12
	CH ₄	CH ₄	O ₂	CO ₂	CO ₂ /H ₂ O	CO ₂	CO ₂	CO ₂	CO ₂			
Componen												
ts:												
m, [kg/s]	1	1	3,99	38,4	43,4	43,4	43,4	43,4	41,14	41,14	41,14	41,14
T, [°C]	15	267,3	920	420	1400	936,7	256	30	30	186,2	30	192,5
p, [bar]	1	16	5 ^{&}	15,2	14	1,03	1,01	1	1	6,16	5,85	35
h, [kJ/kg]	586,6	1237,7	921	494,4	1580,7	937,7	99,6	-222,1	103,3	246,6	98,9	240,3
s, [kJ/kgK]	11,566	11,742	0,693	0,385	1,483	1,565	0,574	-0,272	0,072	0,200	-0,262	-0,218

Table 1 (cont.)

13	14	15	16	17	18	19	20	21	22	23	24	25
CO ₂ *	H ₂ O *	Air	Air	Air	Depl. Air	Depl. Air	CO_2/O_2	CO ₂ /H ₂ O				
41,14	41,14	38,4	38,4	2,75	2,25	19,1	19,1	19,1	15,11	15,11	42,4	43,4
30	209,8	209,8	730	209,8	30	15	411,1	920	920	389,1	468,8	747,2
34	210	210	208	210	1	1	16	15,8	13,7	1	14	1,02
68,5	196,5	196,5	861,4	196,5	125,8	10,7	429,7	996,5	996,4	394,7	549,4	687,5
-0,667	-0,624	-0,624	0,318	0,624	0,450	0,223	0,312	0,990	0,991	1,116	0,488	1,345

1

Comments: * - extracted streams of CO₂ and H₂O from the cycle.

[&] - assumed pressure of compressed oxygen after ITM separation.

Basic data for ZEITMOP cycle - Calculation of energy balances for turbine and compressor units:

$$\begin{split} N_{9} &= N_{HPT} = m_{4} \ (h_{16} - h_{4}) = 14.08 \ \text{MW} \\ &- CO_{2} \ \text{high-pressure turbine (element "9" on the cycle schematic),} \\ N_{5} &= N_{AirT} = m_{23} \ (h_{22} - h_{23}) = 9.10 \ \text{MW} \\ &- Depleted \ \text{Air} \ (Dair) \ \text{turbine (element "5" on the cycle schematic),} \\ N_{6} &= N_{GasT} = m_{6} \ (h_{5} - h_{6}) = 27.91 \ \text{MW} \\ &- CO_{2} + H_{2}O \ (Gas) \ \text{turbine (element "6" on the cycle schematic),} \\ N_{11} &= N_{CO2} = m_{9} \ [(h_{9} - h_{10}) + (h_{11} - h_{12}) + (h_{13} - h_{14})] = 16.98 \ \text{MW} \\ &- CO_{2} \ \text{compressors unit (element "11" on the cycle schematic),} \\ N_{1} &= N_{Air} = m_{19} \ (h_{19} - h_{20}) = 8.0 \ \text{MW} \\ &- \text{Air compressor (element "1" on the cycle schematic),} \\ N_{8} &= N_{Fuel} = m_{1} \ (h_{1} - h_{2}) = 0.65 \ \text{MW} - Fuel \ (CH_{4}) \ \text{compressor (element "8" on the cycle schematic).} \\ \text{Net turbine power:} \qquad N_{net} = [(N_{9} + N_{5} + N_{6}) - (N_{11} + N_{1} + N_{8})] \ \eta_{m} = 25.2 \ \text{MW}, \ (at the mechanical efficiency: } \eta_{m} = 0.99). \\ \text{Thermal efficiency of principal ZEITMOP cycle: } \eta_{th} = N_{net} / \ (m_{1} \ Q_{d}) = 0.5038 = 50.38\%, \ (at Lower Heating Value for CH_{4}: \ Q_{d} = 50 \ \text{MJ/kg}). \end{split}$$

Fig. 1 ZEITMOP Power Cycle with <u>separate</u> Combustion and ITM reactor. Legend: 1-air compressor, 2-synchronous electrical machine, 2-electric generator, 3-heat exchanger (recuperator), 4-ITM reactor, 5-depleted air turbine, 6-CO2+H2O turbine, 7-combustor, 8-fuel gas compressor, 9-CO2 turbine, 10-recuperator, 11-CO2 compressor, 12-water separator, 13-cooling tower. Symbols: 1 - 25 are showing the node points of the cycle.