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Technical background of the project

Develop physically informed models to capture degradation and predict
durability of Nickel-based superalloys during cyclic operations in fossil
energy (FE) USC and A-USC power plants components where thermo-
mechanical fatigue and creep damage are occurring at the same time.
300,000h operation
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A 3-Year,$937,500 Program to Develop Damage
Accumulation Predictions for Boiler Componentsvia
Microstructurally Informed Material Models

Program Objective: Develop High Fidelity Materials Models
for Ni-based Alloys under cyclic and longterm creep loadings
State-of-the-art experimental methods: strain mapping, diffraction
patterns using high energy synchotron, dislocation activity captured
using transmission electron microscopy.

N

Microstructure modeling. Precipitation model. Crystal plasticity model.

‘ '“/.’:'T'--
e 27

]

[

Microstructurally informed models capturing damage accumulation
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Technical Approach Technical Challenge

» Material behavior testirg &char- « Multiple interacting
acterization using high fidelity deformation & damage
tools for damage monitoring mechanisms

* Multiscale modeling for creep * Long duration/high cost of
& cyclic properties predictions testing

« Continuum scale modeling of
a boiler component
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Potential significance of the results of the work. Boiler Applications

ALSTOM
Super 304 H

Max T/P 1100F/25-30MPa 1400F/35MPa
AR Challenge LCF LCF & Creep
Selected 9-12%Cr Steel, Ni-based Ni-based
material superalloy may alloy superalloy
thinner designs

« Estimate remaining life & durability predictions for boiler components
(USC and A-USC power plants)

Shingledecker et al, 2013 o Accelerate the qualification of new materials for boiler and steam

components (A-USC power plants - higher efficiency, carbon reduction)

* Enabling thinner designs (USC power plants)

* Enable more flexible conditions - more frequent cycles (USC Power
plants)

* Model transferrable to other superalloys - 740H, N105

Schrecengost, 2017




Statement of project objectives

* Provide physically informed models, capturing the microstructural changes taking place in the industrial
components under cyclic loading and exposure to high stress and temperature for long operating life

Task 2. 2020-2121

Task 3. 2020

Develop Quantitative
Understanding of Microstructure
Evolution, Deformation and
Damage Mechanisms of H282

2.1. Perform High Temperature
Tensile and Isothermal Low Cycle
Creep-Fatigue Tests

2.2 Perform Cycling Loading Tests at
the Advanced Photon Source (APS)

2.3. Perform Thermo-Mechanical
Fatigue Tests

2.4. Characterize Microstructures of

Test Specimens from Sub-Tasks 2.1
2.2and 2.3

Perform Microscale Modeling of
Microstructure and Strain
Evolution

3.1. Perform Modeling of the Rate of
Precipitation and Growth of Gamma
Prime Particles in the Haynes 282
Microstructure

3.2. Perform three (3) Dimensional
Crystal Plasticity (CP) Modeling of
Haynes 282

Task 4. 2020-2021

Task 5.2021-2022

Develop Continuum Damage
Mechanics (CDM) Model of
Haynes 282

4.1. Develop CDM Model
Framework

4.2. Calibrate, Validate and
Document the CDM Model
Framework

4.3. Integrate CDM Model
Framework into Finite Element
Analysis Software

4.4. Couple Transient Thermal
Analysis to CDM Model
Framework in Finite Element
Analysis Software

Perform Structural Modeling
of a Thick Wall Boiler
Component

5.1 Perform Baseline CDM Analyses
of a Thick Wall Boiler Component

5.2. Perform Damage Sensitivity
Studies on a Thick Wall Boiler
Component




Task 2. Mechanical Testing

LCF tests at 1100°F and 1400°F. 1.25% strain amplitude vs 0.7% strain amplitude
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Task 2. Mechanical Testing

Pure LCF tests compared with 1-hour SPLCF at the maximum strain at 1100°F and 1400°F
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Task 2. Mechanical Testing

Effect of hold time on number of cycles to crack initiation
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Task 2. Mechanical Testing

1400F SPLCF-1h, 1.25%max/114 life hours
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Task 2. Mechanical Testing

Dislocation Density Measurement

B —
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Task 3. Microscale modeling

Rate of Precipitation and Growth of Gamma Prime
Particles in the Haynes 282 Microstructure
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Task 3. Microscale modeling

Crystal Plasticity Modeling M N\
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Task 4. Continuum Damage Mechanics (CDM)

Flow rule \

Effective deviatoric stress
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Task 5. Structural Modeling of a Boiler Component

Task 4 outcome - a material model able to predict mechanical response under
various loadings: pure cyclic, relaxation, creep, hold time fatigue.

Provide limits of the damage parameters defining the failure

O Perform Baseline CDM Analyses of a Thick Wall Boiler Component

1100F (USC conditions) - benchmark configuration = Steel outlet header
1400F (AUSC conditions) -H282 alloy header

O Perform Damage Sensitivity Studies on a Thick Wall Boiler Component

o* time

10°
Damage variable evolution and
time/cycles to failure in high
strain location
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Concluding Remarks

* Performed Mechanical uniaxial tests for deformation mechanisms understanding,
model development and calibration for Haynes 282 alloy (tensile, LCF, SPLCF,
Relaxation, TMF)

* Characterized tested specimens for key damage mechanisms identification (TEM,
EBSD, SEM)

* Performed small scale modeling (crystal plasticity finite element modeling) for
estimating the local stress, strain variations and classify sources of variation.

* Developed preliminary - framework for continuum damage model coupling creep
and cyclic plasticity

Next Steps

* Finalize CDM model calibration

* Validate model on uniaxial and multiaxial stress tests

* Perform Baseline CDM Analyses of a Thick Wall Boiler Component

* Perform Damage Sensitivity Studies on a Thick Wall Boiler Component

November 6, 2020



