
Public   Copyright © 2020 General Electric Company  - All rights reserved R.A. Potyrailo 2020     1

Multi-Gas Sensors 
for Enhanced Reliability of SOFC Operation
DOE/NETL Cooperative Agreement: DE-FE0031653

21st Annual Solid Oxide Fuel Cell (SOFC) Project Review Meeting, July 21-23, 2020

GE:  Radislav Potyrailo, Joleyn Brewer, Baokai Cheng

SUNY Polytechnic Institute: Michael Carpenter, Nora Houlihan

NETL Program namager: Venkat K. Venkataraman



Public   Copyright © 2020 General Electric Company  - All rights reserved R.A. Potyrailo 2020     2

M
u

lt
iv

a
ri

a
te

 r
e

s
p

o
n

s
e

 #
1

Gas 1

Gas 2

Gas 3

$ 250K 
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Status quo:
Mature traditional detector concepts

Performance need:
Compact system for 

multi-gas discrimination
Our approach:

Multivariable photonic gas sensors

Real-time knowledge of H2/CO ratio of anode tail gases:

• will allow control of efficiency of reforming process in the SOFC system

• will deliver a lower operating cost for SOFC customers

In-line sensing is not straightforward, requires traditional analytical instruments 

Project goal and objectives

Goal:

to build gas sensors for in situ monitoring of H2 and CO gases of SOFC systems

Objectives:

to achieve multi-gas monitoring capability with a single multivariable sensor and 

to achieve its long-term sensor performance
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Modern conventional gas sensors:
“For the revolution to take off, accuracy must improve”

Gas cross-sensitivity: undesired response to interfering gases

✓Miniaturization 

✓Reduced power

✓Low cost

alphasense.com

figaro.com

sgxsensortech.com

Hagler et al., Atmospheric Meas. Tech. 2016, 9, 5281 Borrego et al., Atmospheric Environment 2016, 147, 246

The roots: industrial safety
single-output devices for detection of expected gases at high concentrations



Public   Copyright © 2020 General Electric Company  - All rights reserved R.A. Potyrailo 2020     4

High performance analytical instruments:
Diverse designs to reject known and unknown interferences

Diverse instrument-design rules to operate in complex conditions



Public   Copyright © 2020 General Electric Company  - All rights reserved R.A. Potyrailo 2020     5

Design principles of analytical instruments: 
Different orders of measurements

Mathematically, interferences are 
not noticed, cannot be rejected

One independent variable allows 
rejection of KNOWN interferences
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GE Research: 
multivariable sensor solutions for demanding applications

Instruments based on 
mature analytical concepts 
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Sensors and systems based on 
multivariable sensing concepts

Photos by R. A. Potyrailo

alliedscientificpro.com

C&EN May 28, 2018

Qin, Gianchandani, Microsyst. Nanoeng. 2016

emersonprocess.com

Bringing contemporary sensing solutions to society using mathematics and physics
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Our industrial R&D goal:
Develop sensors with new capabilities, transition for commercialization

TRL = technology readiness level

NPI = new product introduction
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Research

GE
Businesses, 

External 
partners

Idea/discovery      Feasibility      Tech transfer       NPI Product maturity

MULTI-ION  WATER SENSORS

RF MULTIPARAMETER OIL 
SENSOR

2017

Commercialization
Early TRL research

2014

GE Ventures START-UP
RF MULTI-GAS SENSORS

2019

WIRELESS MULTIPARAMETER GAS 
SENSOR NETWORKS

2011
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Our industrial R&D goal:
Develop sensors with new capabilities, transition for commercialization

TRL = technology readiness level
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Our design principles for multivariable gas sensors

Potyrailo et al., Nature Photonics 2007

Potyrailo et al., Proc. Natl. Acad. Sci. USA 2013

Potyrailo et al., Nature Communications 2015

New philosophy for selective gas sensing across different frequency ranges

Potyrailo et al., Nature Electronics 2020

Radio 
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http://www.yalescientific.org
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Mix
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Biomimicry -
imitation of biological systems

Bioinspiration -
new functionality, beyond Nature

High temperature

Biomimetics -
recreation of observed functionality

Room temperature

Learning from Nature

1 mm

500 nm

2 mm

Potyrailo et al., J. Opt., 2018

Potyrailo et al., ECS Transactions 2019

Potyrailo et al., Faraday Transactions 2020

Potyrailo et al., Nature Communications 2015

Potyrailo et al., Nature Photonics 2007

Potyrailo et al., Proc. Natl. Acad. Sci. U.S.A. 2013

2 mm1 mm



Public   Copyright © 2020 General Electric Company  - All rights reserved R.A. Potyrailo 2020     11

Ridges

Lamellae

Structural color in nature: 
from understanding to functional applications

1 cm

100 um

Ethanol
n=1.362

Toluene
n=1.497

1 um

Operation principle of multivariable sensors 

utilizing natural Morpho butterfly scales

Potyrailo et al., Nature Photonics, 2007

Research curiosity brings a potential for useful performance
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FS = nonafluorohexyl-trimethoxysilane
QCM = quartz crystal microbalance
MOS = metal oxide semiconductor

Single multivariable sensor 
outperforms classic QCM and MOS sensor arrays

Ethanol, methanol vapors, their mixtures + water background

Potyrailo et al.  Nature Communications   2015

1 mm
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Advancing design rules of nanostructures 
for high temperature SOFC gas-sensing applications

Selectivity control for 
vapors at room temp.

Selectivity control for 
gases at high temp.

Interference 
rejection control

•Polymeric nanostructure

•Absorption and adsorption 
of vapors

•Multi-material inorganic 
•nanostructure

•Catalytic reactions of gases

•Inorganic nanostructure

•Catalytic reactions of 
gases

250 nm

Potyrailo et al., J. Opt., 2018

Potyrailo et al., ECS Transactions 2019

Potyrailo et al., Faraday Transactions 2020
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1 mm 1 mm

Nanostructures for gas sensing at high temperature

Nanostructure with Au nanoparticles before and after capping with CeO2 layer

Au NPs

Pt NPs

Pd NPs

2 mm 2 mm400 nm

1 mm1 mm

Au NPs

Nanostructure with Pd, Pt, and Au nanoparticles before capping with CeO2 layer

Nanostructure with Au nanoparticles after capping with CeO2 layer
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Au NPs

~2 - 5 nm 

Au NPs

~6 - 10 nm 

Pt NPs

~2 - 5 nm 

Pt NPs

~6 - 10 nm 

Experimental data:
Operation temperature 300 oC
Sensitivity ratios over ~520 – 860 nm
Scanning electron microscope images are 
representative examples

Size and metal type effects 
on diversity of sensitivity to H2 and CO 

Data: M. Carpenter, SUNY Poly

H2 CO
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Machine learning support:
Data analytics = 

a.k.a. chemometrics, multivariate statistics, machine learning (ML)

•Support Vector Machines (SVM)

•Principal component analysis (PCA)

•Hierarchical cluster analysis (HCA) 

•Discriminant Analysis (DA)

•Artificial Neural Network (ANN)

•Independent Component Analysis (ICA)

•Partial least squares (PLS) regression

•Principal Component Regression (PCR)

•New tools for boosting sensor stability

R. A. Potyrailo, Multivariable sensors for ubiquitous monitoring of 

gases in the era of Internet of Things and Industrial Internet, 

Chem. Rev. 2016, 116, 11877–11923

Examples of our ML tools

Increasing role of data analytics in high performance sensing

ML
tool

Start

Optimized

ML
tool

ML 
for sensor system optimization

Potyrailo et al., Faraday Transactions 2020
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Fabricated bio-inspired photonic 3-D nanostructures
and their gas testing

Spectrograph

Light
source

Gas flow cell

Data acquisitionGas in  

Light in/out  

Fiber-optic 
reflection probe

Gas 
flow cell
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Spectral diversity of responses at different wavelengths 

allows discrimination of H2 and CO gases
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Training Validation

Dynamic response to H2 and CO
H2 and CO conc: 

10, 20, 30, 40 %

Discrimination of H2 and CO based on diversity of responses at different wavelengths:
(1) directions of the response, (2) relative response intensities
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Example of response stability test

Data: M. Carpenter, SUNY Poly

H2 CO H2 + CO



Public   Copyright © 2020 General Electric Company  - All rights reserved R.A. Potyrailo 2020     25

S
in

g
le

-o
u

tp
u

t 
re

s
p

o
n

s
e

Independent variable

Conventional 
single-output sensor

Gas 1

U
n
iv

a
ri
a
te

 r
e
s
p
o
n
s
e
 

Gas 2

Gas 3

GE Vision: 
Boosting sensor response dimensionality
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Technology accumulation in diverse areas provide previously untapped opportunities 
to build new generation of sensors with complementary capabilities to traditional analytical instruments

Developed 
multi-output sensor

GE Vision: 
Boosting sensor response dimensionality
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Kazimir Malevich, Black Square, 1915, oil on linen
Tretyakov Gallery, Moscow, Russia
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1) Gas-sensitivity:
• Catalytic reactivity of plasmonic nanoparticles incorporated in metal oxide matrix 
• Gas responses driven by changes in the refractive index and extinction coefficient

2) Functions of 3D nanostructure:
• High surface area for interactions with ambient gases
• Spectral discrimination of catalytic reactions in different regions of 3D nanostructure

3) Gas-selectivity:
• Diversity of catalytic activity of metal nanoparticles 
• Origins of catalytic activity diversity of metal nanoparticles: size, metal type, metal oxide type
• Spatial distribution of catalytically diverse nanoparticles for wavelength-dependent gas response

4) Diverse catalytic activity of metal nanoparticles on 3D nanostructure:
• Nanoparticles of the same noble metal but of different sizes
• Nanoparticles of the different noble metals

5) Rejection of gas interferences:
• Spectral discrimination of response of 3D nanostructure to diverse gases

Developed design rules of nanostructures 
for high temperature gas-sensing applications
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