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Application I: Degradation due to fuel contaminants[4][5]
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• In house code, DREAM SOFC-PC – applied to

simulate performance of large area SOFCs

• Capable of simulating transient cell response,

long term degradation and performance

metrics of VI and impedance curves using

the same simulation tool

• Automatic meshing routine allows for user

input of channel and layer dimensions –

including cross flow geometry

• Example applications to fuel contaminant

degradation and study of the impact of

optical fiber temperature sensors are

highlighted
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Performance Evaluation Metrics

Experiment
• Current collector plates 3D printed 

with 750 μm holes for sensors

• Femtosecond laser irradiation to 

stabilize Rayleigh scattering profile

• Measurements with ~4 mm spatial, 

~0.1ºC temperature resolution

• Cell operated at 750°C, 100 sccm 

flow rates for fuel and air, counter 

flow

• Temperature transients measured 

during first 90s of applied current, 

different fuel mixtures compared

• VI Curve produced by 

holding either current or 

potential constant, 

scanning through 

applied loads at user 

input interval

• Impedance curve 
produced using current 

interruption method 

(Bessler [3]) applying 

interpolation in 

frequency space

• Location dependent 
performance obtained 

by considering cell 

sections independently

Application II: Optical fiber sensors[6]
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General Transport equations (3D)

Equations solved via finite volume method throughout

the domain using cell-IDs to determine property

distributions and source terms

Gas species transport – solve for mass fraction of

species 𝑗 in the pore phase 𝑿𝒑
𝒋

:
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Source term 𝑺𝒑
𝒋

includes chemical reactions (i.e. water

gas shift, methane reforming) and interface flux 𝒇𝑰𝒑,𝒔
calculated from Faraday’s law.

Heat transfer – solve for enthalpy 𝒉, with the assumption
that 𝒅𝒉 = 𝑪𝒑𝒅𝑻:
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Where source term 𝑺𝒉 considers heat from Ohmic

heating and reactions

Charge transport – derived from Ohm’s law

𝛁 ∙ Ԧ𝑰 = 𝛁 𝝈𝒆𝒇𝒇𝛁𝝋 = 𝒔 = 𝛁 𝝈𝒆𝒇𝒇𝛁 𝑬𝟎 − 𝜼𝒂𝒄𝒕

Unified potential 𝝋 assumed for mixed ionic/electronic

conducting phases with source terms applied at

electrode/electrolyte interfaces using Butler Volmer:
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Model Equations [1,2]

Gas channel model (1D)
Gas species transport – 1D Plug flow assumed in the

fuel/air channels, reducing to:

𝝏
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• 𝑨 is the channel cross section area and ሶ𝑸𝝓 is the flux

across channel walls interfaces
• Using mass transfer coefficient 𝒌𝒋 as:

ሶ𝑸𝒋 = 𝒌𝒋𝑨 𝑿𝒋,𝒆 − 𝑿𝒋,𝒄

• Mass is balanced with by setting 𝜞𝒑,𝒋
𝒆𝒇𝒇

= 𝒌𝒋∆𝒚𝒊𝒏𝒕 at the

interface
Velocity is calculated assume constant pressure:
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𝝆𝒗 𝒛−∆𝒛 +σ𝒋𝑸𝒋
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Heat Transfer – solve for the enthalpy 𝒉 , with the
assumption that 𝒅𝒉 = 𝑪𝒑𝒅𝑻:
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Flux considers both heat transfer due to mass transport:
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Summary

Meshing Routine

Algorithm uses maximum grid expansion ratio (𝒓𝒎𝒂𝒙) to

limit this ratio and iterative process to maintain proper

boundaries between cell layers

𝒓 =
∆𝒙𝟏

∆𝒙𝒏𝒙
- ratio between first and last grid size of a layer

↓

𝒏𝒙 = 𝟐 +
𝒍𝒏 𝒓

𝒍𝒏 𝒓𝒎𝒂𝒙
- minimum number of grid points in layer

↓

𝒓𝒏𝒆𝒘 = 𝒓
𝟏

𝒏𝒙−𝟐 - actual grid expansion ration
↓

𝒙𝒊 = 𝒙𝒊−𝟏 + 𝒓𝒏𝒆𝒘
𝒊−𝟏 ∗ ∆𝒙𝑖 - produce grid layer (𝑖 = 2 to 𝑛𝑥)

- Repeat for each layer from smallest grid size to largest

Example: Cell with 250 μm fuel electrode with 10 μm

active layer, 40 μm air electrode with 5 μm active layer

and 5 μm electrolyte with set up shown to the right
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Model assumptions:

• Impurity molecules chemically react 

to form secondary phases, these 

secondary phases(contaminant 

coverage) are assumed to block 

the active sites of catalytic material. 

o Decreases the reaction rate of 

the half cell reaction 

• Contaminant coverage and 

secondary phase formation is 

believed to block pores

o Decreases the effective diffusion 

of the fuel 

o Decreases the reaction rates of 

the half cell reaction

Monolayer adsorption mechanism
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Transport of surface coverage
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• Cell voltage drops ~32% during 

phosphine exposure

• Location specific analysis shows 

degradation  worse near inlet

• Contours of phosphine coverage at x/2 (y-z plane) taken at 2, 4 

and 6 hours of phosphine exposure

• Anode/electrolyte interface at y = 0, fuel inlet at z = 0

• Coverage most significant near fuel channel/electrode 

interface near fuel inlet, propagates towards electrolyte/outlet

Simulation domain

Cathode Plate

Cell
Anode Plate

Cathode Plate

Experimental Setup

• Temperature distributions plotted from the anode, and

cathode sensors a3 and c3, respectively. Model results

in red, experiments in black

• The peak on the anode side, appears closer to the H2

gas inlet and shifts closer to the fuel inlet as the H2 flow

rate is reduced.

• Cathode side temperature ~1°C lower, peak in the

center from experiment, toward fuel inlet in the

simulations

• Highest peak 50% molar H2 case (~4°C in experiment,

~3°C in simulation)

• Overall, temperature magnitudes similar between

model and experiment
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• Contours of current density at anode 

electrolyte  interface shows shift of peak 

current from inlet to outlet as coverage 

promulgates 

• 2D temperature contours constructed for anode 

(top) and cathode (bottom) from sensor data (90 

s data shown here) 

• Peak temperature occurs near cell center, fuel 

inlet, contour is skewed to one side consistently

Fuel Side, 100% H2

Air Side, 100% H2

Fuel Side, 50% H2

Air Side, 50% H2

Model
• Single channel simulations with sensors located adjacent to rib 

and channel as well as full cell simulations performed

• Sensor modeled as an air gap

Temperature Change (ºC)

Offset sensorsEvenly distributed Sensors

Temperature Change (ºC)

Offset sensors No Sensors Evenly distributed Sensors

• 2D temperature contours from full cell simulations (50 sccm H2/50 sccm N2 case at 90s) show sensors will 

impact the temperature distribution

• Reconstructed contours from sensor locations show offset sensors will 

result in artificial asymmetry in measured temperature distribution

Conclusions
• Reasonable agreement between 

model and experiments on 

temperature gradient magnitude 

indicates results are reasonable

• Simulation results show that 

asymmetric temperature distribution 

measured experimentally might be 

due to sensor presence 

• Overall, sensors have minor impact on 

temperature distribution, but should 

be distributed evenly to reduce bias

• Result comparison can be used to 

improve model assumptions while also 

informing future sensor experiments 

and application techniques


