Density Functional Theory Modeling on: 1. The Effect of H,O in Hydrogen Oxidation Reaction on the Perovskite Surfaces
2. Hydrogen and Cation Diffusion in Bulk Tetragonal Zirconia for Solid-Oxide Fuel Cells
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1.Effects of H,O in Hydrogen Oxidation Reaction on the Perovskite Surfaces

The electrochemical performances of perovskite materials Sr,Fe; sMoy sO¢_s (SF1.5M) and the Pr- and La-
substituted series for the hydrogen oxidation reaction (HOR; H,(g) + 05 = H,0(g) + V; + 2e~) in dry and
humidified H, are investigated by Density Functional Theory (DFT) based thermodynamic modeling, electrical
conductivity relaxation (ECR), and electrochemical impedance spectroscopy (EIS) techniques [1]
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Surface Models Used to Describe the HOR Reaction Steps
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significantly alters the HOR energy landscape
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* Most of the stable hydrogen defect species in tetragonal bulk ZrO, is
Dependence of MOdeIEd Dz and Dy on 1/1 Hz(-3), and its concentration is 4~6 orders magnitude higher than that
-1 ¢ of H interstitial (H;,,). Nonetheless, the most active hydrogen transport
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DFT energy analysis showed enhanced interaction of
surface H species with the hydrated SF1.5M surface

2.Hydrogen and Cation Diffusion in Bulk Tetragonal Zirconia

Density functional theory based thermokinetic modeling was performed to determine the effect of H,0 and O, gas
pressure on the defect chemistry, hydrogen solubility and diffusivity, and on cation transport in tetragonal bulk Zr0O, [2]
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The DFT based defect thermodynamic modeling results provide information related to the stable defect complexes and
hydrogen-related defect species relevant to bulk cation transport kinetics at different gas pressure and T conditions

Cation migration barriers (V;, vs Hy) H migration barriers (Hz, vs H;;)

involves the O, gas phase (or H,0 - H,) on the reactant side, which
destabilizes the reaction with increasing temperature; this gas effect
was further balanced in the Schottky defect formation.
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