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Abstract

Optical fiber sensor preparation procedure

Optical fiber sensing platform for the SOFC application

Optical fiber-based sensors exhibit inherent advantages such as the electrical wiring-free configuration, compatibility with broadband wa
velength and distributed interrogation, and the elimination of electrical sparks in flammable atmospheres. For these reasons, the SOFC an
d sensors groups at the National Energy Technology Laboratory have collaborated to develop sensors that will allow for in situ distributed
measurements of temperature and/or gas composition with centimeter-scale resolution. An overview of the gas sensing program will be
presented focusing on recent results on developing functional coating materials for the optical fibers that allow (1) distributed oxygen mo
nitoring across the cathode or (2) monitoring of H2/H2O/CO/CO2 across the anode. The impact of the coating composition, thickness, an
d deposition will be discussed.

1) Small diameter →   compatible with anode and cathode flow field integration
2) No electrical wiring →   enhanced stability & compatibility with electrified systems
3) Robust in harsh environment / high temperature conditions
4) Distributed sensing →   able to monitor parameters spatially internal to SOFC

Distributed oxygen sensing test in the actual SOFC system
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Sensitivity test procedure for the perovskite decorated optical fiber sensors
1) Plastic jacket (stripping) and cladding (HF etching) removal

exposing the core of multi-mode fiber. (Thorlabs FGA105- LCA)
2) Sputter deposition (Lab18, Kurt J. Lesker) with 3-inch targets of

(La0.8Sr0.2)0.95MnO3-δ (LSM, Feldco), (La0.8Sr0.2)0.95CoO3-δ (LSC,
Feldco) and (La0.8Sr0.2)0.95Co0.2Fe0.8O3-δ (LSCF, Feldco) at 50W(RF) in
Ar&O2(4:1) environment using a custom-made rotational fixture.

3) Placement of the prepared fiber in a gas feeding tubular furnace
and connection to the light source (DH-2000-BAL, Arcoptics) and
both visible (Vis) and near infrared (NIR) range detectors.
(Jaz, Ocean optics, Inc.; FTNIR-U-09-026, Arcoptics)

4) Ramping the temperature in N2 up to 800˚C and pre-treatment in
several O2 concentration cycles.

5) Sensitivity test exposing the film to the operational gas conditions.
(1-19% O2 balanced with N2)
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New material applications for reducing environment sensing (ongoing)
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LSM LSC LSCF

Pressure (mTorr) 3 100 3 100 3 100
Growth rate(nm/min) 0.170 0.553 0.195 0.413 0.197 0.392

1) LSM films showed a relatively slow response speed. (incomplete response / recovery during 2h gas exposition durations)
2) For 20 nm LSC case, a very weak response is observed, which may be the result of a delaminated and cracked microstructure.
3) 20 nm LSCF optical fiber sensor displays an increased transmittance in the Vis and NIR upon O2 expositions. The magnitude of the intensity

change is the most obvious, and it shows the best performance in terms of the response speed and N2-recovery. Considering LSCF has a
higher ionic conductivity, this material property can be one of the primary reasons for a more rapid response and recovery.
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Needs a lot of TCs and wirings
: high chance of issues on sealing, degradation, noise and etc.
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Oxygen sensitivity test result (20nm films on the fiber)
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Full spectra / SEM after the test

NIR range strip chartVis range strip chart Full spectra / SEM after the test
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1) Femtosecond laser-enhanced + LSCF deposited D-shaped fiber sensors were fabricated 
and utilized for O2 sensitivity tests in the actual fuel cell system for the first time.

2) During the DFC system operation, the sensor detected the consumed O2 content corresponding to current loading conditions.
3) At the extremely low air flow rate and high current loading, the depleted O2 signal intensity approached to the value for pure N2.
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Distributed sensing resultLaser enhanced + LSCF deposited D-shaped fiber sensor prep.

SFMO (Sr2Fe1.5Mo0.5O6-δ) in H2 & O2
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Praseodymium doped ceria (PCO) sensor preparation
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reported XRD on PCO
J. Mater. Chem., (2005) 15, 1061

Confirmed the structural stability 
in reducing condition

Optical characterizations 
for checking Pr-doping feature at different 

sintering temp.

Obvious optical change between 
reducing and oxidizing conditions
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