Modeling Interdiffusion Across Solid YSZ-LSM Interface

Jose Bohorquez'?, David Mebane'?2

'"US Department of Energy, National Energy Technology Laboratory, Morgantown, WV; ?2Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV

B S
_
_
_
_

N NATIONAL
Research & am |[ENERGY

Innovation Center T

TECHNOLOGY
LABORATORY

Knowledge of the interface chemistry is centrally important for designing SOFCs with

improved durability since:

“* Electrode fransport and exchange processes are strongly affected by the local surface

and inferface chemistry

“ Small changes in the TPB chemistry can drastically modify the SOFC oxygen exchange

rates

Modeling this phenomena can give an insight into the improvement of SOFCs
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The interface model is solved using a phase field approach. The Poisson-Cahn equation
evaluates the inferfacial diffusion, while the Allen-Cahn equation fracks the presence of

iInNfermediate phases.
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(b) Finite volume discretization
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(a) Schematic of oxygen reduction on MIEC Cathode
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. Active Figure a. shows the reaction
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CC | mechanism. The schematic shows
MIEC Flectrode Bleatrads Thidlnwess the friple phase boundary and bulk
T Incorporation. This mechanism will
be discretized, similarly to Figure b,
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but with an adaptive refined mesh
towards the interface. Figure ¢, is a
2D cross-sectional of the model

(c) 2D model domain

The model will need 1o be able to handle the boundary of the MIEC and Electrolyte. This
problem is being addressed by incorporating the mesh adaptability of MOOSE. The process will
e outlined as followed:

*Refine the mesh of the MIEC

*Write and modify kernels in MOOSE to model the SOFC

“*Fine tune the mobility parameters within the model using the sequential Monte Carlo routine
sIncorporate final model into overall NETL model
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