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Introduction and Objectives

Knowledge of the interface chemistry is centrally important for designing SOFCs with 

improved durability since: 

vElectrode transport and exchange processes are strongly affected by the local surface 

and interface chemistry

vSmall changes in the TPB chemistry can drastically modify the SOFC oxygen exchange 

rates

Modeling this phenomena can give an insight into the improvement of SOFCs

Results and Figures

Defect Chemistry/Reaction Pathway

Kinetic Model

The interface model is solved using a phase field approach. The Poisson-Cahn equation 

evaluates the interfacial diffusion, while the Allen-Cahn equation tracks the presence of 

intermediate phases.

Fundamental Equations
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(a) Schematic of oxygen reduction on MIEC Cathode

(c) 2D model domain

(b) Finite volume discretization

Figure a. shows the reaction 
pathway of the proposed 

mechanism. The schematic shows 
the triple phase boundary and bulk 
incorporation. This mechanism will 
be discretized, similarly to Figure b, 
but with an adaptive refined mesh 
towards the interface. Figure c, is a 

2D cross-sectional of the model

Conclusions and Future  Work

The model will need to be able to handle the boundary of the MIEC and Electrolyte. This 
problem is being addressed by incorporating the mesh adaptability of MOOSE. The process will 
be outlined as followed:
vRefine the mesh of the MIEC
vWrite and modify kernels in MOOSE to model the SOFC
vFine tune the mobility parameters within the model using the sequential Monte Carlo routine
vIncorporate final model into overall NETL model
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