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Motivation for MIEC on IC Nano-Composite SOFC Cathodes
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Standard Nano-Composite Cathode (NCC) Fabrication
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Standard LSCF-GDC NCCs Show Good Low Temperature
Performance but Have Stability Problems
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Atomic Layer Deposited (ALD) ZrO, Thin Films Have
Been Reported to Improve SOFC Cathode Durability
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These results may be compromised by Ag migration from the current collector into the cathode with time

Gong, et al, Nano letters, 13.9 (2013) 6
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/10O, Coated Nano-Composite Cathode Fabrication
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Silver Shouldn’t Be Used as Current Collector Because of
Its Electro-Migration at Elevated Temperature

Electrode

Electrolyte

Zhang, et al. ACS Applied Energy Materials 3.4 (2020). 9
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Silver Current Collectors Unpredictably Alter

Standard LSCF-GDC NCC R Aging Behavior
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Screen Printed Gold Current Collector Grids and a Pt Plate

Push-Contact Setup Was Used for the Measurements Here
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Porous ZrO, Overcoats Were Produced Using the ALD
Recipes Employed Here
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No ZrO, Thickness Variation with Cathode Thickness

Was Observed

* Electrode
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Zhang, et al. ACS Applied Energy Materials 3.4 (2020).
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The ZrO, Overcoat Remained Conformal and Maintained

the Target Thickness After 1000 Hours at 650°C
) - .

Tested cell with 3nm ZrO, overcoat (actual Tested cell with 5nm ZrO, overcoat (actual
thickness ~3.2nm) thickness ~5.3nm)

Zhang, et al. ACS Applied Energy Materials 3.4 (2020).
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/10, Overcoating Did Not Significantly Alter the Initial

Performance of Standard LSCF-GDC NCCs
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/10, Overcoating Did Not Significantly Alter the Initial
Performance of Standard LSCF-GDC NCCs
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Different Rp Degradation Rates Were Observed for Standard

LSCF-GDC NCCs with leferent ALD ZrO Thicknesses
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Independent Degradation Tests at the University of South

Carolina Showed Similar Degradation Behavior to Those

Taken at Michigan State and Reported on the Previous Slides
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Gas Diffusion Limitation Changes Were Not the Main

Degradation Mechanism for ZrO, Coated LSCF-GDC NCCs
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No Obvious Particle Coarsening Was Observed 1in Any
NCCs after 1000 Hours of 650°C Degradation
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Zhang, et al. ACS Applied Energy Materials 3.4 (2020). 20
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XPS Showed ZrO, Coatings Reduced the Amount of Inactive

“Surface” Sr on the LSCF-GDC NCC Surface After Aging

a . .

10 = Before Aging |
—0.81 e After Aging I
2 _——— =z — — 1.}
;-)“0.6- _f _{- -
804 {»
£ TN
= ~
©,0.2- ~

e i_ L _{_
0.0 -
0 1 2
ZrO, Overcoat Thickness (nm)
Before Aging After Aging

3|0 7\
8 / A A
";: c) ’ jf\\ /’;‘”{/
e Pl . I
é s /%<;%i>:sh_h_. _ﬁ_ﬁ_fi‘:§§~
/:T d) -‘l
1‘; 5“’{*r\
é ,/in j ‘:,‘_\, / W\

136 132
Binding Energy (eV)

-
rs
o

132 128

140 136
Binding Energy (eV)

Lattice Sr 3d 5/2
—— Surface Sr 3d 5/2
——Baseline
——Fit Data

- - - Lattice Sr 3d 3/2
- - —Surface Sr 3d 3/2
«eseees Raw Data

Even though there was more Sr on the surface after
aging, the fraction of “Surface” Sr was lower with
ALD ZrO2 overcoats.
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SrZrO; 1s expected to form during aging for 1 and 2 nm ZrO, coated LSCF-GDC
NCCs as well, but was hard to detect due to the low SrZrO, concentration.

Zhang, et al. ACS Applied Energy Materials 3.4 (2020).
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Mechanism Hypothesis: ZrO, Overcoats Serve as a

“Sr Getter” and Clean up the LSCF Surface During Aging
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nclusions

1. ZrO, ALD overcoats 1-5 nm in thickness improved
the long-term stability of standard LSCF-GDC
NCCs without significantly altering their R | between
400°C and 700°C.

2. Higher degradation rates, and similar initial
performance, were observed for LSCF-GDC NCCs
with 10 nm ZrO, overcoats

3. ZrO, overcoats served as “Sr getters” and reacted
with inactive “Surface” Sr to form SrZrO; during
aging. This reaction cleaned up LSCF surface and
resulted in improved stability for ZrO, overcoats < 5
nm thick. For LSCF-GDC NCCs with 10 nm ZrO,
overcoats, too much SrZrO; accumulated on the
LSCF surface, blocking oxygen exchange and
increasing the measured degradation rate.
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