Ultrasonic Measurements of Temperature Profile and Heat Fluxes in Coal-Fired Power Plants

Kenneth Walton, Manish Roy, and Mikhail Skliar Department of Chemical Engineering, University of Utah

Project Objective

Advance technology readiness of ultrasound method for real-time measurement of temperature profiles and heat fluxes in solids. Validate a prototype multipoint measurement system in a coal-fired utility boiler.

Technology Status

- Method provide accurate continuous non-invasive real-time measurements of temperature distributions in solids.
- Perfornance demonstrated in laboratory and pilot-scale oxy-fuel combustor.
- Heat fluxes inside structures can be measured.
- Measurements in multiple locations are possible.
- Can be used with existing and integrated into new energy conversion units.

Pilot-Scale Demonstation

Broad applicability

- 1. Temperature distributions on a line, surface, or in a volume can be measured.
- 2. Energy, chemical, military, space, and other applications with extreme conditions where conventional probes fail.
- 3. Alternative to insertion sensors.
- 4. The only method to measure internal heat fluxes.
- 5. State of health and state of change monitoring in batteries.
- 6. Temperature measurements in micro- and nano-devices.
- 7. Functionalization through additive manufacturing.

3D-printed samples with echogenic features

3D Temperature Measurments

Axial and surface measurments

 $\rightarrow T(z)$

References

3D reconstruction of

- 1. M. Skliar, K. Whitty, and A. Butterfield, "Ultrasonic temperature measurement device," US Patents 8,801,277 and 9,212,956.
- 2. Y. Jia and M. Skliar, "Noninvasive Ultrasound Measurements of Temperature Distribution and Heat Fluxes in Solids," Energy & Fuels, 30:4363–4371, 2016.
- 3. Y. Jia, V. Chernyshev, and M. Skliar, "Ultrasound measurements of segmental temperature distribution in solids: Method and its high-temperature validation," Ultrasonics, 66:91-102, 2016.

Acknowledgment

Funding is provided by the DOE National Energy Technology Laboratory. Project: DE-FE0031559; Manager: Maria Reidpath.