# Vertically Aligned Carbon Nanotubes Embedded in Ceramic Matrices for Hot Electrode Applications



### Yongfeng Lu

Laser Assisted Nano Engineering Lab Department of Electrical and Computer Engineering University of Nebraska-Lincoln Lincoln, Nebraska

Email: ylu2@unl.edu

http://lane.unl.edu

April 12<sup>th</sup>, 2018







# **Project Title**

| Project Title:                 | Vertically Aligned Carbon Nanotubes Embedded in Ceramic |  |
|--------------------------------|---------------------------------------------------------|--|
|                                | Matrices for Hot Electrode Applications                 |  |
| Grant Number:                  | DE-FE0023061                                            |  |
| Project Investigator:          | Yongfeng Lu                                             |  |
| <b>Recipient Organization:</b> | University of Nebraska - Lincoln                        |  |
| Project Period:                | 10/01/2014 – 09/30/2018                                 |  |

### **Goal and Objectives**

**Primary goal:** Develop carbon nanotubes-ceramic (CNT-C) composite structures in which vertically aligned CNTs (VA-CNTs) are embedded in ceramic matrices for hot electrode applications in magnetohydrodynamics (MHD) power systems.



- **CNTs**:  $T_m > 1726 \ ^{\circ}C$ Oxidation resistance ~ 700  $\ ^{\circ}C$  $\sigma = 10^6 - 10^7 \ \text{S/m}$  $K = 200 - 30,000 \ \text{W/(m·K)}$ 
  - **BN**:  $T_m > 2900$  °C Oxidation resistance ~ 1500 °C Insulator K = 600 - 740 W/(m·K)
  - Cu:  $T_m = 1084 \degree C$ Oxidation resistance < 200 °C  $\sigma = 59.6 \times 10^6 \text{ S/m}$ K = 401 W/(m·K)

### **Goal and Objectives**

#### **Objectives:**

- 1. Super growth of VACNT carpets
- 2. Fabrication of CNT-BN composite structures
- Stability and resistance studies of the CNT-BN composite structures
- 4. Thermionic emissions from the CNT-BN composite structures



# **Goal and Objectives**

### **Milestone of the project**

| Tasks                                                           | Milestone                                                                               | Planned<br>Completion Date |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------|
| 1. Project Management and<br>Planning                           | Successful completion of the proposed project within the 3-year period.                 | 09/30/2017                 |
| 2. Super Growth of Vertically<br>Aligned CNT Carpets            | Achieve the growth of VA-CNT carpets on Cu substrates with CNT lengths up to 1 cm.      | 09/30/2015                 |
| 3. Fabrication of CNT-BN<br>Composite Structures                | Achieve uniform and dense growth of BN matrices wrapping VA-CNTs.                       | 03/31/2016                 |
| 4. Stability and Resistance                                     | Determine the stability and resistance of the CNT-<br>BN composite structures           | 09/30/2016                 |
| Composite Structures                                            | Determine the electrical and thermal conductivities of the CNT-BN composite structures. | 09/30/2017                 |
| 5. Thermionic Emissions from the<br>CNT-BN Composite Structures | Determine the thermionic emission performance of the CNT-BN composite structures.       | 09/30/2018                 |

# Outline

#### 1. Background and Motivations

#### 2. Accomplishments

- 1) Improving BN growth using the chemical vapor deposition method
- 2) Structural and elemental analysis of grown BN
- 3) Fabricating VACNT-BN structure and testing its oxidation stability
- 4) Determining the infiltration of BN into VACNT arrays
- 5) Tested gas erosion ability of CNT-BN at extreme temperatures
- 6) Tested thermal and electrical conductivity of CNT-BN composite structure
- 3. Deliverables
- 4. Status and Future Work
- 5. Student Training





How are we going to satisfy future energy needs?



#### U.S. Electricity Generation (2013)

#### U.S. Electricity Generation (2016)



| Method      | Efficiency (%) | References                                           |  |
|-------------|----------------|------------------------------------------------------|--|
| Nuclear     | 33 – 36        | Efficiency in Electricity Generation, EURELECTRIC    |  |
| Coal        | 39 – 47        | "Preservation of Resources" Working Group's          |  |
| Natural gas | < 39           | "Upstream" Sub-Group in collaboration with VGB, 2003 |  |
| MHD         | ~ 65           | http://www.mpoweruk.com/mhd_generator.htm            |  |

#### Principle of Magnetohydrodynamic Power Generation



#### **Advantages:**

- 1) Only working fluid is circulated without moving mechanical parts.
- 2) The ability to reach full power level almost directly.
- 3) Lower infrastructure cost than conventional generators.
- 4) A very high efficiency (60% for a closed cycle MHD).

### **Material Challenges for a MHD Generator**

| Requirement                          | Remarks                                                                      |  |
|--------------------------------------|------------------------------------------------------------------------------|--|
| Electrical conductivity ( $\sigma$ ) | $\sigma$ > 1 S/m, flux ≈ 1 amp/cm <sup>2</sup>                               |  |
| Thermal conductivity ( <i>k</i> )    | High heat flux from the combustion fluids at 2400 K                          |  |
| Thermal stability                    | Melting point (T <sub>m</sub> ) above 2400 K                                 |  |
| Oxidation resistance                 | Resistant to an oxygen partial pressure about 10 <sup>-2</sup> atm at 2400 K |  |
| Corrosion resistance                 | Potassium seeds and aluminosilicate slags                                    |  |
| Erosion resistance                   | High velocity hot gases and particulates                                     |  |
| Thermionic emission                  | The anode and cathode should be good acceptor and emitters, respectively.    |  |

| Property                             | CNTs                              |
|--------------------------------------|-----------------------------------|
| Electrical conductivity ( $\sigma$ ) | 10 <sup>6</sup> – 10 <sup>7</sup> |
| Thermal conductivity ( <i>k</i> )    | 200 – 3000                        |
| Thermal stability                    | T <sub>m</sub> > 1726 °C          |
| Oxidation resistance                 | ~ 700 °C                          |
| Corrosion resistance                 | Yes                               |
| Erosion resistance                   | Yes                               |
| Thermionic emission                  | Yes                               |

Y. Won, Y. Gao et al., PNAS, 2013, 110(51), 20426-20430.

1000 × current density of copper
5 × electrical conductivity of copper
15 × thermal conductivity of copper
1/7 density of copper and ½ or Al



3,500 pounds of Cu and 147,000 pounds of AI in a Boeing 747





| Property                             | BN                    |  |
|--------------------------------------|-----------------------|--|
| Electrical conductivity ( $\sigma$ ) | Insulating            |  |
| Thermal conductivity ( <i>k</i> )    | 600 - 740             |  |
| Thermal stability                    | T <sub>m</sub> = 2973 |  |
| Oxidation resistance                 | ~ 1500 °C             |  |
| Corrosion resistance                 | Yes                   |  |
| Erosion resistance                   | Yes                   |  |
| Thermionic emission                  | N.A.                  |  |



http://www.graphene-info.com/3d-white-graphene-could-cool-electronics



|                                                                    | Graphene                              | h-BN                    |
|--------------------------------------------------------------------|---------------------------------------|-------------------------|
| Space group                                                        | P <sub>63</sub>                       | P <sub>63</sub>         |
| Lattice constant, <i>a</i> (Å)                                     | 2.46                                  | 2.50                    |
| Lattice constant, c (Å)                                            | 6.70                                  | 6.66                    |
| Thermal expansion coefficient (10 <sup>-6</sup> °C <sup>-1</sup> ) | -1.5 ∥, 25 ⊥                          | -2.7 ∥, 38 <sup>⊥</sup> |
|                                                                    | · · · · · · · · · · · · · · · · · · · |                         |

Within the basal planes (||) and perpendicular to them ( $^{\perp}$ )

#### **Proposed Solution: CNT-BN Composite Structures**



- VACNTs: Electrical and thermal conductive channels.
- BN: Protective layer shielding CNTs from erosive and corrosive environments.

| Property                                  | BN                                            | CNTs                              |  |
|-------------------------------------------|-----------------------------------------------|-----------------------------------|--|
| Melting point (°C / K)                    | 2973 / 3246                                   | > 1726 / 2000                     |  |
| Chomical inorthose                        | Inert to acids but soluble in alkaline molten | Voo                               |  |
|                                           | salts and nitrides                            | 165                               |  |
| Oxidation resistance in open air (°C / K) | 1500 / 1773                                   | < 700 / 973                       |  |
| Electrochemical passiveness               | Yes. Used as electrode.                       | Yes.                              |  |
| Electrical conductivity (S/m)             | Insulating                                    | 10 <sup>6</sup> - 10 <sup>7</sup> |  |
| Thermal conductivity [W/(m·K)]            | 600 - 740                                     | Up to 3000                        |  |

### A review of previous research

1) Obtained patterned VACNTs



3) Obtained various VACNT-Ceramic (Si, GaN, BN) structure



2) Built a CVD system for BN growth



4) Tested anti-oxidation ability of CNT-Ceramic

#### (Si, GaN, BN)



- 1) Improving BN growth using the chemical vapor deposition method
- 2) Structural and compositional analysis of grown BN
- 3) Oxidation stability of grown BN
- 4) Infiltration of BN into VACNT arrays
- 5) Fabricating VACNT-BN infiltrated structure and testing its oxidation stability
- 6) Gas erosion resistance of CNT-BN at extreme temperatures
- 7) Thermal and electrical conductivity of CNT-BN composite structure

- Improving BN using thermal CVD method

#### Improving thermal CVD system for BN growth



BF<sub>3</sub> and NH<sub>3</sub> are separately fed into the hot zone to prevent undesired reaction at low temperature

- Improving BN using thermal CVD method

#### Improving thermal CVD system for BN growth

|                        | N <sub>2</sub> Flushing | Heating | Growth  | Cooling |
|------------------------|-------------------------|---------|---------|---------|
| T (°C)                 | RT                      |         | 1100 °C | RT      |
| Time (min)             | 20                      | 60      | 180     | >60     |
| N <sub>2</sub> (Torr)  | 10                      |         |         | 10      |
| NH <sub>3</sub> (sccm) |                         | 100     | 100     |         |
| BF <sub>3</sub> (sccm) |                         |         | 75      |         |

| Growth<br>Parameter | Value                                                   |
|---------------------|---------------------------------------------------------|
| Precursor           | NH <sub>3</sub> (100 sccm)<br>BF <sub>3</sub> (75 sccm) |
| Temperature         | 1000-1100 °C                                            |
| Chamber<br>pressure | 2-3 Torr                                                |
| Growth time         | 30-180 min                                              |
| Substrate           | SiO <sub>2</sub> /Si                                    |

- 1) Improving BN growth using the chemical vapor deposition method
- 2) Structural and compositional analysis of grown BN
- 3) Oxidation stability of grown BN
- 4) Infiltration of BN into VACNT arrays
- 5) Fabricating VACNT-BN infiltrated structure and testing its oxidation stability
- 6) Gas erosion resistance of CNT-BN at extreme temperatures
- 7) Thermal and electrical conductivity of CNT-BN composite structure

- Structural and compositional analysis of grown BN

### Structural analysis: Thin BN film on SiO<sub>2</sub>/Si (Optical images & AFM)



- Structural and compositional analysis of grown BN

### **Composition analysis: Thin BN on SiO<sub>2</sub>/Si**



10 min

- Structural and compositional analysis of grown BN

#### Structural analysis: Thick BN film on SiO<sub>2</sub>/Si



- Structural and compositional analysis of grown BN

### Structural analysis: Thick BN film on SiO<sub>2</sub>/Si (HRTEM)



**Growth direction** 

- Structural and compositional analysis of grown BN

#### **Composition analysis: Thick BN film on SiO<sub>2</sub>/Si (Raman mapping)**



- Structural and compositional analysis of grown BN

#### Composition analysis: Thick BN film on SiO<sub>2</sub>/Si (Polarized Raman)



- Structural and compositional analysis of grown BN

### **Composition analysis: Thick BN film on SiO<sub>2</sub>/Si (Polarized CARS)**



- 1) Improving BN growth using the chemical vapor deposition method
- 2) Structural and compositional analysis of grown BN
- 3) Oxidation stability of grown BN
- 4) Infiltration of BN into VACNT arrays
- 5) Fabricating VACNT-BN infiltrated structure and testing its oxidation stability
- 6) Gas erosion resistance of CNT-BN at extreme temperatures
- 7) Thermal and electrical conductivity of CNT-BN composite structure

- Oxidation stability of grown BN

#### Oxidation stability of as-grown thick h-BN (in air)



Scale bars: 100 um

- Oxidation stability of grown BN

#### Oxidation stability of as-grown thick h-BN (in air)



#### Slight decrease in thickness

- Oxidation stability of grown BN

#### **Oxidation stability of as-grown h-BN (in air)**



- 1) Improving BN growth using the chemical vapor deposition method
- 2) Structural and compositional analysis of grown BN
- 3) Oxidation stability of grown BN
- 4) Infiltration of BN into VACNT arrays
- 5) Fabricating VACNT-BN infiltrated structure and testing its oxidation stability
- 6) Gas erosion resistance of CNT-BN at extreme temperatures
- 7) Thermal and electrical conductivity of CNT-BN composite structure

- Infiltration of BN into VACNT array

#### **Infiltration of BN into VACNT array**



- Infiltration of BN into VACNT array

#### Infiltration of BN into VACNT arrays with different height



- Infiltration of BN into VACNT array

#### Infiltration of BN into long VACNT arrays



- Infiltration of BN into VACNT array

#### Infiltration of BN into long VACNT arrays



- Infiltration of BN into VACNT array

#### Infiltration of BN into VACNT arrays (EDS mapping)



- Infiltration of BN into VACNT array

#### Infiltration of BN into VACNT arrays (EELS mapping)



- 1) Improving BN growth using the chemical vapor deposition method
- 2) Structural and compositional analysis of grown BN
- 3) Oxidation stability of grown BN
- 4) Infiltration of BN into VACNT arrays
- 5) Fabricating VACNT-BN infiltrated structure and testing its oxidation stability
- 6) Gas erosion resistance of CNT-BN at extreme temperatures
- 7) Thermal and electrical conductivity of CNT-BN composite structure

- Fabricating VACNT-BN infiltrated structure

#### Thin VACNT-BN film (Cross-sectional SEM)



- Fabricating VACNT-BN infiltrated structure

#### **Thick VACNT-BN film (Cross-sectional SEM)**



- Fabricating VACNT-BN infiltrated structure

#### Fabricating milimeter long VACNT-BN (~2mm)



- Fabricating VACNT-BN infiltrated structure

#### **Thermal stability of VACNT-BN (O2 100 mTorr)**



- Fabricating VACNT-BN infiltrated structure

#### **Thermal stability of VACNT-BN (O2 100 mTorr)**



- 1) Improving BN growth using the chemical vapor deposition method
- 2) Structural and compositional analysis of grown BN
- 3) Oxidation stability of grown BN
- 4) Infiltration of BN into VACNT arrays
- 5) Fabricating VACNT-BN infiltrated structure and testing its oxidation stability
- 6) Gas erosion resistance of CNT-BN at extreme temperatures
- 7) Thermal and electrical conductivity of CNT-BN composite structure

#### - Gas erosion ability of CNT-BN at extreme temperatures

#### **Gas erosion ability of CNT-BN at extreme temperatures**



- 1) Improving BN growth using the chemical vapor deposition method
- 2) Structural and compositional analysis of grown BN
- 3) Oxidation stability of grown BN
- 4) Infiltration of BN into VACNT arrays
- 5) Fabricating VACNT-BN infiltrated structure and testing its oxidation stability
- 6) Gas erosion resistance of CNT-BN at extreme temperatures
- 7) Thermal and electrical conductivity of CNT-BN composite structure

- Thermal conductivity of VACNT-ceramic infiltrated structure

#### **Thermal conductivity the VACNT-BN infiltrated structure**

| Parameter                          | h-BN   | G-band |
|------------------------------------|--------|--------|
| $\chi_p(\text{cm}^{-1}/\text{mW})$ | 3.57   | 4.24   |
| $\chi_T$ (cm <sup>-1</sup> /K)     | 0.0094 | 0.014  |
| $\Delta \overline{T}(K/mW)$        | 379.79 | 302.86 |
| <i>k</i> [W/(m⋅K)]                 | 438.83 | 550.31 |

- Electrical conductivity of VACNT-ceramic infiltrated structure

#### **Room-temperature electrical conductivity the VACNT-BN infiltrated structure**



A CNT-BN device is attached to gold electrodes.

### 2. Accomplishments - Summary

- 1) Improved BN growth method via thermal CVD
- 2) Obtained good quality BN films on SiO<sub>2</sub>/Si
- 3) Obtained infiltrated VACNT-BN structures (both films and cubic patterns)
- 4) Tested VACNT-BN structures with good oxidation stability (1400 °C)
- 5) Tested VACNT-BN structures with good thermal conductivity and excellent electrical conductivity
- 6) Tested VACNT-BN structures with good hot gas erosion resistance (126 min)

### **3. Deliverables**

#### 1) BN films

2) VACNT, VACNT-BN infiltrated composite structures



#### 3) VACNT-BN device



# 4. Future work

### - Status of the project

| Goals                                                                     | Milestone                                                                                        | Planned<br>Completion Date | Status                                                                                                                            |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Super Growth of Vertically<br>Aligned Carbon Nanotube<br>(VACNT) Carpets  | Achieving the growth of VACNT<br>carpets on Cu substrates with CNT<br>lengths up to 1 cm.        | 09/30/15                   | Obtaining millimeter long VA-<br>CNT carpets (up to 4 mm)                                                                         |
| Fabrication of CNT-Boron-<br>Nitride (CNT-BN)<br>Composite Structures     | Achieving uniform and dense growth of BN matrices wrapping VA-CNTs.                              | 03/31/16                   | Obtaining CNT-BN infiltrated composite structures                                                                                 |
| Stability and Resistance<br>Studies of the CNT-BN<br>Composite Structures | Determining the stability and resistance of the CNT-BN composite structures.                     | 09/30/17                   | Determined the high-<br>temperature stability/oxidation<br>resistance (1400 °C) of CNT-<br>BN infiltrated composite<br>structures |
| Thermionic Emissions<br>from the CNT-BN<br>Composite Structures           | Determining the electrical and<br>thermal conductivities of the CNT-<br>BN composite structures. | 09/30/18                   | Determined thermal and<br>electrical conductivity; testing<br>thermionic emission of CNT-BN<br>infiltrated composite structures;  |

# 4. Future work

#### - Planned Activities in the Next-Phase

| Tasks                                                                                      | Methods                                                                     | Millstones                                                                    | Planned<br>Completion Date |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------|
| Chemical stability of CNT-BN composite structures                                          | Chemical corrosion                                                          | Achieving CNT-Si <sub>3</sub> N <sub>4</sub> infiltrated composite structures | 09/30/18                   |
| High temperature electrical<br>conductivity studies of the CNT-<br>BN composite structures | Home-made electrical<br>conductivity measurement<br>system (77 K to 1800 K) | Electrical conductivity: > 1 S/m;<br>thermal conductivity: > 50<br>W/m·K      | 09/30/18                   |
| Thermionic emission current<br>measurement of the CNT-BN<br>composite structures           | Acetylene torch with tungsten electrodes in air.                            | CNT-BN composite structures can be used as good emitters                      | 09/30/18                   |

# **5. Student Training**

| Student    | Program            | Training                                                                                                                                                                                                                                                                          |
|------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Qiming Zou | PhD student at UNL | Under the support of this project, he was trained with all<br>required experiments and data analysis related to<br>fabricating and characterizing patterned VACNTs, BN, GaN,<br>VACNT-BN, VACNT-Al <sub>2</sub> O <sub>3</sub> , VACNT-GaN, VACNT-GaN-Si<br>composite structures. |

Acknowledgements



We would like to express our heartfelt thankfulness for the Department of Energy and National Energy Technology Laboratory (Grant Number: DE-FE0023061) for the generous financial support.

# Thank you!

