

High-Temperature Sapphire Pressure Sensors For Harsh Environments

<u>Haocheng Zhou</u>¹, Austin Vera¹, Peter Woerner², Jakob Consoliver², Alexandra Garraud¹, David Mills¹, <u>William Oates</u>², Mark Sheplak¹

¹Interdisciplinary Microsystems Group, University of Florida ²Florida State University

4/12/2018

DE-FE0012370 - 01/01/2014 – 08/31/2018 2018NETL Crosscutting Research Review Meeting

Project Information

- Focus: Development of novel machining methods for the fabrication of harsh environment pressure sensors
- Award information
 - Project title: "High-temperature sapphire pressure sensors for harsh environments"
 - Award #: DE-FE0012370
 - Program manager: Sydni Credle
 - Duration: 3 years (1.5 year NCE) started Jan 2014
- Project team
 - University of Florida
 - Florida State University

Outline

Introduction

- Thermal Damage Modeling (FSU)
- Sensor Fabrication (UF)
- Acoustic Characterization (UF)

Motivation

- Next generation advanced energy systems will require harsh environment dynamic instrumentation:
 - Process control/closed loop feedback
 - Increase efficiency, reduce emissions & cost
- Sensor operational requirements
 - Temperature: >1000 °C and dynamic pressure: up to 1000 psi, 10s kHz
 - Atmosphere: corrosive and/or erosive
- Conventional pressure sensor instrumentation limited to ~500 °C
 - Temperature mitigation techniques: stand-off tubes, water cooling
 - Oxsensis claims 750 °C using sapphire interferometry technique

Technical Objectives

- Novel sapphire fabrication processes
 - Subtractive machining: ultrashort pulse laser micromachining
 - Additive manufacturing: thermocompression bonding via spark plasma sintering
- Modeling and characterization of laser machined sapphire
 - High temperature experimental characterization, modeling, and Bayesian uncertainty quantification
- Fabricate, package, calibrate, and demonstrate sapphire optical pressure sensor

Previous Work

- Sapphire fabrication processes
 - Developed empirical based path planning simulation for pico-second laser micromachining
 - Proved concept of thermal compression bonding via spark plasma sintering
- Modeling and characterization of laser machined sapphire
 - High temperature (1500°C) bend bar characterization
 - Light-matter ablation physics and Bayesian uncertainty quantification
- Fabricated various pressure sensor components

Outline

- Introduction
- Thermal Damage Modeling (FSU)
- Sensor Fabrication (UF)
- Acoustic Characterization (UF)

Nanoindentation analysis

Justin Collins, William S Oates, Mark Sheplak, and Daniel Blood. Experimental investigation and modelling of laser machining of sapphire for high temperature pressure transducers. In 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, page 1120, 2015.

Nanoindentations: Experimental Results

Finite Deformation FEA Modeling

Deformation Decomposition $\mathbf{F} = \mathbf{F}^{p} \cdot \mathbf{F}^{e}$ Stress-Strain Relation $\mathbf{S} = \mathbf{C} : \mathbf{E}^{e}$ \mathbf{C} - Isotropic elastic moduli

Yield Stress Evolution

 $Y(e^p) = Y_0 + H_{iso}e^p$

Assume plasticity law with hardening

- Amorphous zone near surface
- No distinct dislocation pattern

Justin Collins, William S Oates, Mark Sheplak, and Daniel Blood. Experimental investigation and modelling of laser machining of sapphire for high temperature pressure transducers. In 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, page 1120, 2015.

Key Results

Plastic Hardening Parameter Relations

Experiment	Linear Hardening Parameter (MPa)
Virgin 1	60
Laser Machine 1	28
Laser Machine 2	19
Laser Machine 3	46
Laser Machine 4	37

Model fits apply E = 450 GPa, Yield Stress = 1 MPa

Sapphire Crystal Structure

- Specimens cut with r-plane normal to surface.
 - ϕ_0 :angle between specimen normal and r-plane surface normal
 - Assumes uncertainty in crystal cut & x-ray measurements
- X-ray diffraction scans were done in the pristine and laser machined regions

X-Ray Diffraction

Figure 3: Diffraction of x-rays by planes of atoms.

Normal (r-plane) Peak Comparisons

X-Ray Kinematic Model

$$I = |F_{hkl}|^2 = \left(\sum_{i=1}^{N} f_i e^{2\pi i \left(\mathbf{P}_j \cdot \mathbf{x}_i \cdot \mathbf{R}(\varphi_0)\right)}\right)$$

f_i: Scattering factor

- P_i: Miller indices (hkl) of plane of interest j
- x_i: Cartesian coordinates of atom i
- $R(\phi_0)$: Rotation Matrix dependent on ϕ_0
- N: number of atoms

$$I(\theta) = |F_{hkl}|^2 G(\theta) = I_{scale} |F_{hkl}|^2 e^{-\sqrt{2\pi} \frac{(\theta - \theta_b)^2}{2\sigma^2}}$$

- θ : Angle of incident x-ray
- $\theta_{\rm b}$: Angle at which maximum intensity occurs (Bragg Angle)

2

 σ : Standard deviation of peak about θ_{b}

I_{scale}: Scaling factor

Parameter uncertainty quantified using Bayesian statistics

- Markov Chain Monte Carlo algorithm
- Delayed Rejection Adaptive Metropolis (DRAM)

0.139 0.14 0.141 0.142 0.143 0.144

4400 4500 4600 4700 4800 4900

Spectra Predictions Normal (012) to R-Plane (Pristine Sapphire)

Strain Inference from X-Ray Spectra

Model Assumptions

Unknown strain parameters inferred using:

$$t_{i} = \sigma_{ji} n_{j}^{R} = 0$$
$$\mathbf{n}^{R} = \mathbf{i}_{z}$$
$$\sigma_{ij} = C_{ijkl} \left(\varepsilon_{kl} - \varepsilon_{kl}^{\text{Pristine}} \right) \cong C_{ijkl} \varepsilon_{kl}$$

Assumptions:

- 1. Pristine reference state has zero residual strain
- 2. Traction on r-plane is zero
- 3. $\epsilon_{11} = \epsilon_{22}$ and modulus is isotropic

Residual Strain Estimations

Assuming isotropy ($\epsilon^{R}_{11} = \epsilon^{R}_{22}$) and the relation $\underline{\epsilon}^{O}_{33} = \epsilon^{R}_{33}$ = const.

- $D^{O} = f(A^{O}, B^{O})$
- $E^{O} = f(A^{O}, B^{O}, C^{O})$

Using Bayesian methods coupled with the above relations the strain tensor is determined:

$$\boldsymbol{\epsilon}^{\mathsf{R}} = \begin{bmatrix} 4.4 & 2.1 & -1.2 \\ 2.1 & 4.4 & -7.6 \\ -1.2 & -7.6 & -1.4 \end{bmatrix} \cdot 10^{-3}$$

Where: $\epsilon_{11}^{R} = \epsilon_{22}^{R} = (4.447 \pm 0.530) \cdot 10^{-3}$ $\epsilon_{33}^{R} = (-1.366 \pm 0.019) \cdot 10^{-3}$

High confidence laser machined zone has in-plane compression which produces higher toughness

Outline

- Introduction
- □ Thermal Damage Modeling (FSU)
- Sensor Fabrication (UF)
- Acoustic Characterization (UF)

Transduction Mechanism Selection

	Capacitive	Piezoresistive	Piezoelectric	Optical
Thermal drift elimination	✓	X	✓	✓
DC measurement	\checkmark	\checkmark	X	\checkmark
EMI insensitivity	Х	Х	Х	\checkmark
Harsh environment capability (>500 °C)	Х	X	X	\checkmark
Packaging simplicity	Х	X	Х	Х

 Optical transduction (intensity modulation – optical lever) is selected given the constraints

Pro	Con
Incoherent source	Lower sensitivity
Thermally stable	

Material Selection

	Silicon Carbide	Diamond	Sapphire
Bulk substrate availability	\checkmark	Х	\checkmark
Optical fiber availability	Х	Х	\checkmark
Well-established	\mathbf{v}	V	V
μ-machining processes	^	^	^

- Benefits of sapphire
 - High melting point (2053 °C)
 - Resistance to chemical corrosion
 - Excellent hardness
 - **Large transmission window (200 nm 5 \mum)**
 - Multimode optical fibers available

Sensor Fabrication – Mechanical Sensitivity Optimization

- 24
- Aim: optimize diaphragm diameter for best acousto-mechanical sensitivity using lumped element modeling:

Sensor Fabrication – Mechanical Sensitivity Optimization

- Aim: optimize diaphragm diameter for best acousto-mechanical sensitivity
- Using lumped element modeling
- □ Assuming 200 kPa_{max}, and a 38 ± 22 µm thick substrate, f_{mincon} solutions:

Thickness (µm)	Diameter (mm)	Flat-band Sensitivity S _{AM} (nm/Pa)	Flat-band Sensitivity S _{AM} (dB)	Maximum deflection (µm)	Resonating Frequency (kHz)
60	5.4	1.2 × 10 ⁻¹	-198.2	24.5	31.3
50	4.4	9.3 × 10 ⁻²	-200.6	18.7	38.1
38	3.4	7.6 × 10 ⁻²	-202.4	15.1	46.0
16	1.4	2.9 × 10 ⁻²	-210.7	5.8	90.7

Design diameter choosen = 5 mm

Sensor Fabrication – Optical Sensitivity Optimization

Aim: Find the distance between end of fiber and reflective Pt layer for linear optical response

Sensor Fabrication – Initial Process Flow

 \rightarrow Issue:

Thermocompression bonding tool is down

 \rightarrow Solution:

Use of ceramic epoxy for bonding the two substrates together

Sensor Fabrication – Revised Process Flow

Sensor Fabrication – Bonding

- Laser machining for both substrates
- Laser machining corrugation for adhesion improvement

Microscope 100X

Sensor Fabrication – Membrane/Cavity Substrates

- □ Alignment on flip-chip bonder
- Manual application of alumina ceramic adhesive into the edge trench

Sensor Fabrication – Optic Fiber Structure

- Sapphire optic fiber was mounted on:
 - Laser micromachined stepped ferrule
 - FC connector
 - Stainless steel 304 tubing for rigidity
 - High-temperature alumina ceramic adhesive for bonding

Sensor Fabrication – Packaging

- Stainless steel housing
- □ High-temperature alumina ceramic adhesive for bonding

Outline

- Introduction
- Thermal Damage Modeling (FSU)
- Sensor Fabrication (UF)
- Acoustic Characterization (UF)

High Temperature Testing Facility

- Plane Wave Tube (PWT) for acoustic characterization
 - Speaker generates acoustic pressure waves
 - Propagate as plane acoustic waves through the tube furnace
 - Option: tube furnace $ON \rightarrow$ high temperature capability
 - Pressure sensor characterized in situ

Step 1: Characterization of Temperature

- □ Aim: acoustic characterization up to 1200 °C
- □ Issue: measured temperature is too low

35

Solution: adding insulation to prevent thermal leak

Step 2: Acoustic Characterization

36

- High temp PWT test set up
- Sensor (DUT,1), probe tip microphone (reference,2), thermocouple(3)

Step 2: Acoustic Characterization Results

SPL(90-160dB) Sweep at 1kHz

37

- Temperature from 23°C (room temp) to 600°C with 100°C step size
- Sensitivity drops dramatically after 500°C
 - Failure?

Step 2: Acoustic Characterization Results

Step 2: Acoustic Characterization Results

 Frequency response function via multisine acoustic waves (300-2200Hz)

39

- Temperature from 23°C to 600°C
- FRF magnitude drops after 500°C

Conclusions

- Material Characterization and Modeling
 - Changes in plasticity of laser machined sapphire quantified using finite deformation contact mechanics & FEA
 - X-ray diffraction and Bayesian UQ used to identify source of increase in fracture toughness--in-plane compression
- Sensor Fabrication
 - Determined the separation between fiber and reflective membrane for optimal sensitivity
 - Designed, fabricated and packaged a prototype sapphire pressure sensor using a ceramic adhesive
- Acoustic Characterization
 - Optimized high temperature plane wave tube setup to reach 1100 °C at sensor location
 - Set up all the equipment necessary for characterization
 - Thermocouple, remote reference microphone with probe tip, sensor
 - Characterized sensor up to 500 °C (failure point)

Future Work

Additive Manufacturing Process and Mechanics

- Develop bonding technology to bond sapphire substrates with and without intermediate layers
- Experimentally characterize bonding strength and fracture as a function of temperature
- Develop a fundamental understanding of high temperature (>1000C) fracture mechanics and interfacial material physics
- Understand laser processing parameters on subsurface material properties to enhance fatigue resistance and additive/subtractive manufacturing
- Sensor Fabrication
 - Improve the fabrication and packaging process including thermal compression bonding and packaging sealing
- Acoustic Characterization
 - Calibrate PWT acoustic response at high temperatures for a new sensor with improved fabrication and packaging
 - Hot jet test using high temperature sapphire sensor
 - Test long term stability of the sensor

Questions?

Thank you!