

Precursor-Derived Nanostructured SiC-Based Materials for MHD Electrode Applications

Fumio S. Ohuchi (PI)* and Rajendra K. Bordia(Co-PI)**

YiHsun Yang (Graduate Student)

*University of Washington
Box 352120, Seattle, WA 98195

** Clemson University Clemson, SC 29634

Grant No. DE-FE0023142 April 11, 2018

MHD Power Generation

Issues in electrode materials

- Must withstand in harsh MHD environments
 - Extremely high temperature
 - Exposure to hot plasma
 - Severe ion bombardment
 - Mechanical stress via thermal expansion
 - Thermal, electrical, mechanical and chemical stability of materials for all above.
- Conformal process
- Low resistivity

Overall Goal

Develop a novel class of SiC based ceramic composite materials with tailored compositions for MHD channel applications.

Our Focus:

Control and understand the effect of the nature of the <u>excess</u> carbon of SiC on the structural and electrical properties.

Questions to be asked:

- What is (are) the most appropriate parameter(s) to describe and quantify the nature of these materials?
- How can these parameters be controlled?
- What are their effects on the properties of these materials, especially relevant to targeted MHD channel applications?
- How does the nanostructure and hence the properties evolve under extreme conditions (e.g. temperature and plasma)?

Our Project Team Tasks

TASK 1: PROCESSING AND STABILITY OF NANOSTRUCTURED SI-C-X CERAMICS

Sub-Task 1.1: Effect of stoichiometry and temperature on the nanostructure

Sub-Task 1.2: Effect of temperature and stress on the stability of the nanostructure

TASK 2: MECHANICAL AND THERMAL PROPERTIES OF NANOSTRUCTURED SI-C-X CERAMICS

Sub-Task 2.1: Modulus, strength toughness, and thermal diffusivity

Sub-Task 2.2: Compressive creep Lead: Prof. R. Bordia @ Clemson

TASK 3: ELECTRICAL PROPERTIES OF NANOSTRUCTURED SI-C-X CERAMICS

Sub-Task 3.1: Effect of C/Si ratio on room and elevated temperature electrical

conductivity

Sub-Task 3.2: Combinatorial selection of X and effect of X on room and elevated

temperature electrical conductivity

TASK 4: SURFACE ENGINEERING OF NANOSTRUCTURED SI-C-X CERAMICS

Sub-Task 4.1: Surface modification to enhance thermionic emissions

Sub-Task 4.2: Changes of surface/sub-surface structure and chemistry by high density

plasma irradiation.

Sub-Task 4.3: Simulation of plasma interactions Lead: Prof. F. Ohuchi @ Washington

TASK 1: PROCESSING OF SI-C-X CERAMICS

Effect of Stoichiometry and Temperature on the Nanostructure

Polycarbosilanes

One-to-one correlation between the C/Si ratio in precursor and ceramic.

Our choice : *Polycarbosilane* family

Precursors: Starfire® System's SMP series

C/Si ratio from 1 to 2.25 (SMP-10, -25 and -75)

Polymer Derived Si-C-X Ceramic Process

Bulk Crystalline Structure of Si-C-X

Bulk C:Si Atomic Ratio of Si-C-X

Glow Discharge Optical Emission Spectrometer (GDOES)

(Horiba GD-Profiler-2)

Internal calibration by CVD-SiC (Si:C=1:1)

 Measure C/Si ratio after 250 sec. sputtering (Equivalent to ~5micron removal)

• C/Si Results

Composition	xByC (HP)	xByC(PIP)
0C	1/08	1.16
1C	1.11	
3C	1.17	
5C	1.20	1.34
10C		1.50
15C		1.62

Excess C in bulk Si-C-X

Chemical and Molecular Structure of Si-C-X

• Probing depth difference by 514nm laser Raman

D & G (graphite) $^{\sim}$ 100-200nm

:. Excess carbon species on surface/grain boundary

Process Related Structural Model of Si-C-X

TASK 2: MECHANICAL AND THERMAL PROPERTIES OF Si-C-X CERAMICS

Modulus, Toughness, Strength and Thermal Diffusivity

(1) Modulus and Hardness: Indentation

CVD-SiC

(2) Fracture Toughness: Vicker's indentation

[Lawn, Evans, D.B. Marshall, J. Am. Ceram. Soc. 63 (1980) 574.

TASK 2.2: Compressive Creep of Si-C-X Ceramics

Goal: Effect of temperature and stochiometry on creep resistance of Si-C-X

Compressive creep

Recent compressive creep results on Si₃N₄ matrix composites from our group (unpublished)

To be completed

TASK 3: ELECTRICAL PROPERTIES OF Si-C-X

Our Research Focus:

Conductivity measurements at extreme temperatures.

Development: Pt lead-graphite contact, Kelvin probe method, Alternative polarity to avoid capacitance effect.

- Effect of C/Si ratio on the electrical conductivity
 Evaluate whether electrical conductivity of SiC-PDCs is dominated by precipitation of excessive carbon at elevated temperatures
- Create data-base for dc-electrical conductivity of PDC Si-C-X at a wide range of high temperature (RT~1700°C)

1700°C Tube furnace Electrometer and current source

LabVIEW Work station

Electrical Resistivity Change with T for HP and PIP samples

TASK 4: SURFACE ENGINEERING OF SI-C-X

Integrated Experimental System:

- Retarding grid spectroscopy to measure thermionic emission (TE)
- X-ray photoelectron spectroscopy (XPS)
- Auger electron spectroscopy (AES)
- K deposition for work function

engineering

- R-type TC and optical pyrometer for temperature measurement
- Ion gun for surface cleaning

Capable of measuring:

- Surface composition at elevated temp.
- Total current and kinetic energy distribution of thermionic emission.

Dynamic Changes of the Surface Composition with T

Dynamic changes of the Surface Structure with T

Raman Molecular Structure

Sample: 1B1C (HP)

A common failure reason for MHD channel electrodes Electrical Arcing or Electrical Discharge

Solution: Thermally emit accumulated charge

Workfunction determines thermionic emission.

Thermionic emission (TE) Properties

Principle of Thermionic Emission

Experimental challenge:

- Emission consists of thermionic emission of electrons, positive/ negative ions at elevated temperatures.
- How do you separate contribution of each emission?
- How do you count the change of the surface composition at elevated temperatures?

Physics of Thermionic Emission Measurement

Thermionic Emission of Si-C-X

Summary of this project

- A new type of silicon carbide / carbon composite synthesized from polymer derived synthesis:
 - Two routes: Hot-pressed and Polymer Infiltration
- Thermo-mechanical properties decrease with C content
- Electrical properties of PDC SiC/C tailored by different carbon concentration.
- Self-regenerated surface is unique to the SiC/C composites
- Work function controlled by the self-regenerated carbon.
- Comprehensive understanding of polymer derived Si-C-X on high-temperature thermo-mechanical-structuralelectrical-surface properties through this project.

Thanks to DOE for financial support.

