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Chemical Looping: Fossil Fuel Conversion with Carbon Capture 



Applying chemical looping to coal-based hydrogen production
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Chemical looping hydrogen production w/ carbon capture

Li, F., Zeng, L., & Fan, L. S. (2010). Industrial & Engineering Chemistry Research, 49(21), 11018-11028.
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Syngas
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Main reactions: 

Syngas Chemical Looping (SCL) Process for H2 Production

Reducer: CxHyOz + Fe2O3 CO2 + H2O + Fe

Oxidizer: Fe + H2O  Fe3O4 + H2 + Q

Combustor: Fe3O4 + O2 Fe2O3 + Q

Total: CxHyOz + H2O + O2 CO2 + H2 + Q

>98% carbon capture efficiency
>99% H2
Purity



Fixed Bed Tests

1998

Bench Scale Tests
1 kW

2001

Pilot Scale Demonstration
250 kW

2010

Sub-Pilot Tests
25 kW

2007

Evolution of The Ohio State Syngas Chemical Looping

Particle
Synthesis

1993

TGA Tests

SCL Process

Coal-derived 
syngas 
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Depleted 
Air Reducer: CxHyOz + Q  + Fe2O3 → CO2 + H2O + 

Fe

Oxidizer: Fe + H2O → Fe3O4 + H2 + Q

Combustor: Fe3O4 + O2 → Fe2O3 + Q

Net: CxHyOz + H2O + O2 → CO2 + H2O + H2

National Carbon Capture 
Center, Wilsonville, Alabama
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Autonomous Process Control Concept

• Objective: develop an advanced process automation control architecture and imaging 
and optimization sensor information for the OSU chemical looping process

• Develop HLC-SMC control scheme for process automation (OSU ECE)
• Establish sensor algorithm for high temperature ECVT (Tech4Imaging) 
• Integrate process performance parameters with FocalPoint Optimization System (B&W)
• Prepare and test process control and optimization concepts in 25 kWth sub-pilot test unit 

(OSU CBE)

Sub-Pilot Unit Pilot Unit
Summary of DE-FE0026334



Utkin, V., "Variable structure systems with sliding modes," Automatic Control, IEEE 
Transactions on , vol.22, no.2, pp.212,222, Apr 1977

• Advantage: State trajectory control, robustness

• Controller changes behavior as the state 
trajectory crosses the surface

• Exemplary mathematical form:

• Two stages:
• Reaching mode: to get to the sliding 

surface
• Sliding mode: reduced order motion on 

the surface

• Disadvantage: chattering 
• actuator wear-and-tear 
• potential plant excitement

Sliding Mode Controller (SMC)



Goal:
• Reduce chattering
• Enhance disturbance rejection

Design of adaptive M

Modified sigmoid function:

௠௔௫: upper 

limit of designed 

actuator action 

௠௜௡: minimum control effort 

to maintain steady state 

Dead band 
Transitional zone



Adaptive 



Implementation of automatic start-up algorithm
• Pre-set operation 

goals

• HLC-SMC structure

• 1-click startup for 
fluidization, 
entrainment and 
maintaining 
circulation during 
heat-up

• Fuel injection upon 
reaching reaction 
temperatures and 
operation 1-click 
acknowledgement



Start-up sequence test drive
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• Achieved automatic 
startup with zero 
operator intervention

• Maintained oxygen 
carrier circulation at 
minimal solid flow rate 
using self-regulating 
aeration and 
entrainment gases

Nitrogen 
Injection

Syngas Injection

Temperature spike from 
voluntary capacity change



Circulation rate control
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• SMCs attempt 
to minimize 
attrition by 
controlling 
circulation rate

High-potential 
circulation stoppage 

indicator

Aggressive 
control action 

Process responded, 
circulation resumed



Fuel injection mode
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• Simultaneous control actions 
correctly executed by all SMCs with 
no operator intervention 

• Achieved ~99% syngas conversion

• No gas breakthrough was observed in 
either reactor
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Electrical Capacitance Volume Tomography (ECVT)

3” ID

9.75”

Ceramic Lining

Capacitance 
Probe

Sensor Assembly Capacitance Probe
Arrangement



ECVT on OSU Chemical Looping System

Moving Bed
Fluidized Bed



Fluidized Bed Combustor - Slug Flow 800˚C

T = 800°C
QAir = 283 slpm
Umf =  0.84 m/s
U = 4.07 m/s
U/Umf = 4.82
dp = 1.5mm
ρp = 2500 kg/m3

Vertical Cross-Sectional Image
Z-

Ax
is

X-Axis
Normal Plane Image

X-
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3-Dimensional Image Operating Conditions

Raw Capacitance 
Measurement



23 C, 600 slpm
Ug-Umf = 1.49

Image Reconstruction:

335 C, 300 slpm
Ug-Umf = 1.5

640 C, 220 slpm
Ug-Umf = 1.80

720 C, 176 slpm
Ug-Umf = 1.47

Image reconstruction frame rate: 80 Hz ~ 260 Hz

Solids 
holdup

αs

Temperature Variation of Slugging Fluidized Bed



Fluidized Bed Characterization

• Separate fluidization 
regimes identified

• Bubbling, Slugging, 
and Transition 
Regimes

• Bubbling – irregular 
gas bubbles

• Transition – bubble 
coalescence and 
partial gas slugs

• Slugging – fully 
developed gas slugs



Moving Bed Velocity - ECVT

• Parallel pairs of plates at different vertical locations 
chosen

• Irregularities in solid holdup detected as bed moves 
through sensor

• Capacitance signals cross-correlated to find frame ‘lag’
• Using sensor dimensions and data framerate, linear 

velocity can be extracted



Moving Bed Velocity – Cross Correlation
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• Before cross correlation, 
capacitance data for each 
pair is normalized

• Commonly referred to as 
Normalized Cross 
Correlation

• Two signals are shifted to 
find the maximum cross 
correlation

• From the magnitude of 
the shift, data capture 
frequency, and solid 
density, linear velocity 
and mass flow can be 
extracted



Raw Image Enhanced Color Contrast Processed

Moving Bed Velocity – Image Reconstruction



Moving Bed Velocity – Frequency Effect & Results

• High frequency generally 
generates noisier signals, which 
leads to non-matching 
capacitances patterns in half of 
the trials (*)

• Low frequency signals generally 
show clear patterns, which 
consistently allow accurate 
calculation of solid linear 
velocities by cross correlation

(ECVT)(Scale + Timer)



Moving Bed Velocity - Plate Pairing Effect

Plates Velocity 
(cm/s)

1,4 – 13,16 1.66

2,5 – 14,17 1.65

3,6 – 15,18 1.65

Plates Velocity 
(cm/s)

7,10 – 19,22 1.72

8,11 – 20,23 1.73

9,12 – 21,24 1.72

Plates Velocity 
(cm/s)

1,9 – 13,21 1.72

2,10 – 14,22 1.89

3,11 – 15,23 1.75



Project Achievements

• Autonomous startup, steady-state operation and shutdown
• Implemented hybrid HLC-SMC structure
• Designed system successfully carried out complete 

operation sequence with minimal human intervention
• ECVT Solid flow control development

• Developed two different applications of ECVT to non–
intrusively monitor different gas-solid flow patterns at 
high temperatures

• Optimization Software
• Designed optimization problem : minimizing 

aeration/entrainment gas while maximizing gas conversion
• Preliminary data obtained. Analyzing data and revising 

program

Remaining Task



• DOE/NETL
• Ohio Development Service 
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Dynamic Modeling
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Phase Plane

Sliding surface S2

Sliding surface S3
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Arrows represent the 
direction of system state as 
time progresses
1, 2 : Pressurization
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Matlab simulation of a sliding mode 
controller design for pressure control

• Control law: rate of valve opening change
•
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• S2 Controller: 
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• S3 Controller: 
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Goal:
• Reduce chattering
• Enhance disturbance rejection

Design of adaptive M

Modified sigmoid function:

௠௔௫: upper 

limit of designed 

actuator action 

௠௜௡: minimum control effort 

to maintain steady state 

Dead band 
Transitional zone



Sliding Mode Controller for Pilot Unit System 
Pressure Control

• Vessel model:
• Consider the reactor as a single tank with one inlet and one outlet
• Isothermal 

•
ௗ௉

ௗ௧
ൌ

ோ்

௏
ൈ ଶଵ଴ܨ െ ݔ ⋅ ݂ ଶܲ଴ସ

• ݔ is valve opening ZYT-700, ݔ ⋅ ݂ ଶܲ଴ସ is the valve flow equation:

• ݂ ܲ ൌ
௩ܥ ⋅ ܻ ⋅ ܰ ⋅ ܲ ⋅

௉ି௉బ

௉ெೢ்
    ݂݅ 

௉ି௉బ

௉
൏ 0.64
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଴.଺ସ

ெೢ்
    ݂݅ 

௉ି௉బ

௉
൒ 0.64

• Initial condition: P204 = 0 psig, T = 300K, ZYT-700 = 0

• F210 increase from 0 to 1000 lb/hr at 1 lb/hr/s

• F210 sudden increase from 1000 to 1300 at t=45min

• Pressurization in three stages:
• S1: outlet closed, start gas flow, till dP/dt > 1 psi/min
• S2: pressurize at dP/dt = 1 psi/min, until
• S3: gradually slow down pressurization, and maintain pressure at 30 psig
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Fuel injection mode

• Nitrogen 
injection to 
verify behaviors 
for individual 
SMCs

• Extreme 
capacity change 
to test 
disturbance 
rejection 
performance



SMC Response to Capacity Change
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