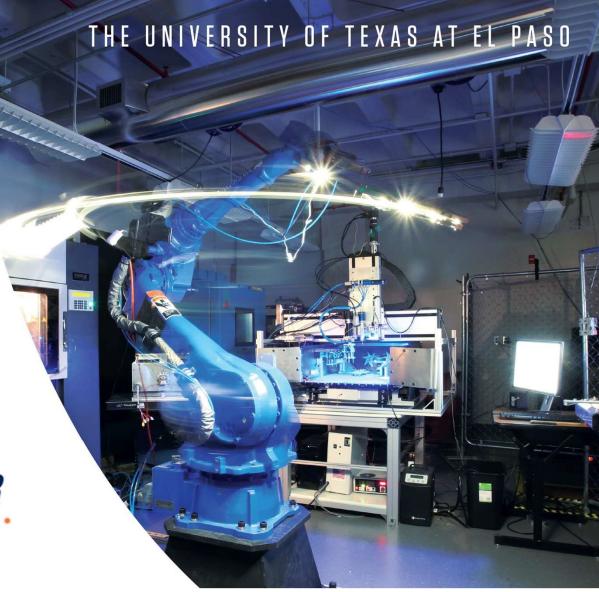
#### Metal 3D printing of Low-NOx Fuel Injectors with Integrated Temperature Sensors

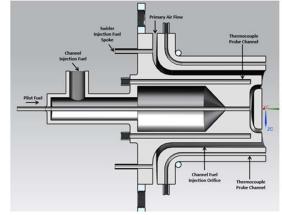
**Presented by: Philip A. Morton** 


**PI:** Dr. Ahsan Choudhuri **Co-PI:** Dr. Ryan Wicker

Funding support by the U.S. Department of Energy (DOE), award No. DE-FE0026330 Program Manager: Maria Reidpath



W.M. KECK CENTER








#### Motivation

- The purpose of the project is to fabricate a low  $NO_x$  fuel injectors for power generation power plants
- Additive manufacturing (AM) allows the fabrication of complex internal channels and cavities required for injector design



• AM allows the integration of temperature sensors



## UEP

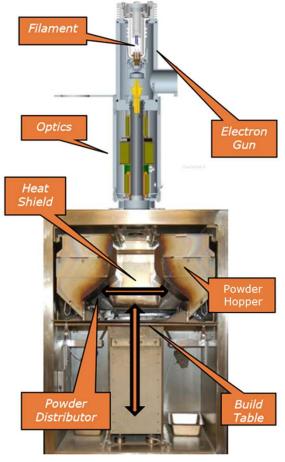
### THE UNIVERSITY OF TEXAS AT EL PASO

#### **Problem Statement**

- Precursor powder used in powder bed fusion remains trapped within internal cavities and channels after fabrication
- Some processes result in sintered powder which is a challenge for removal





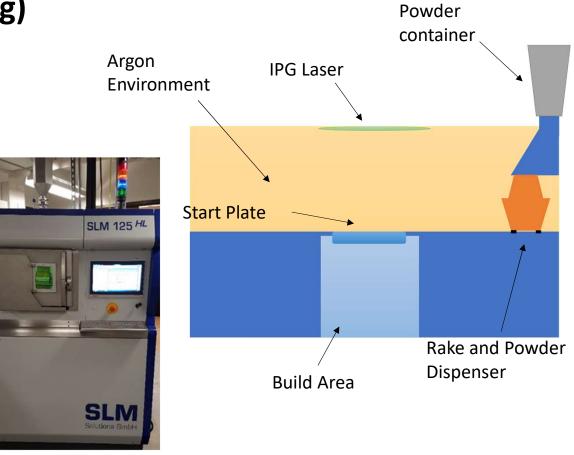





#### **EBM (Electron Beam Melting)**

- Builds at elevated temperature
- Machine: Arcam A2
- Ultra high vacuum environment (~10<sup>-3</sup> torr)










### **SLM (Selective Laser Melting)**

- Builds in low temperature
- Machine: SLM Solutions 125
   HL
- Environment can be with Argon or Nitrogen gas





#### **Preliminary Powder removal evaluation**

• Ultrasonic vibration was tested on samples of various wall thicknesses and orifice diameters 25mm Cylinder









19mm cylinder (4mm channel)

FTR

25mm cylinder 35mm cylinder (4mm channel) (4mm channel)

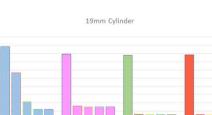
45mm cylinder (4mm channel)



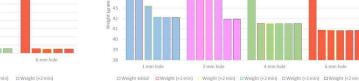


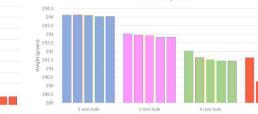
35mm Cylinder

47 45 <del>∞</del> 44


135 134 133 - 132 131 £ 130 129 128 126 2mm hole 1 mm hole 4 mm hole 6 mm hole

Weight (+2 min) Weight (+2 min) Weight (+2 min) Weight (+2 min) Weight (+2 min)





W.M. KECK CENTER FOR 3D INNOVATION











6



#### **Powder Removal Methods**

- Powder Recovery System (PRS)
- Vapor Blast
- Ultrasonic
- Ultrasonic & Hammering
- Liquid Nitrogen & Ultrasonic
- Chemical Etching





Vapor Blast



PRS



Liquid Nitrogen



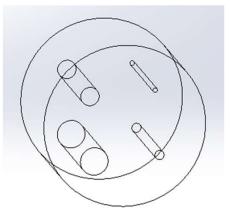
**Chemical Etching** 



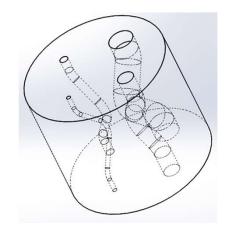
Hammering



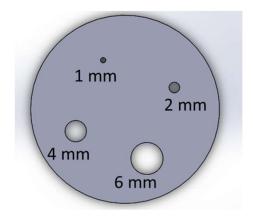
Ultrasonic




#### **Test articles**


• Sample parts were tested in pairs

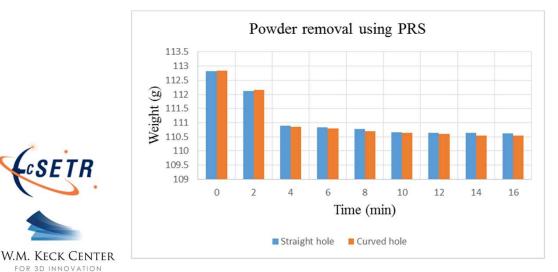







Straight Holes




**Curved Holes** 





#### **Powder Recovery System**

- Pressurized air blasts metal powder
- Powder is recovered and reused
- Part was clean after 6 minutes

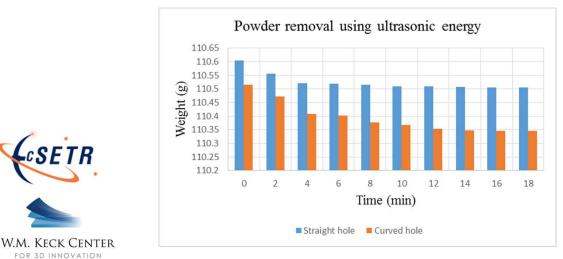








9



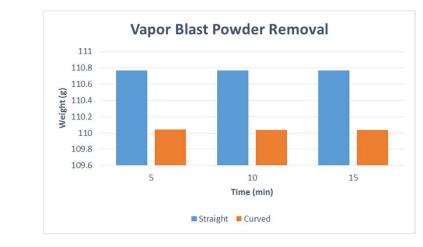

#### **Ultrasonic vibration**

- Ultrasonic vibration is applied to break up sintered powdered
- After 6-8 minutes part was clean



Ultrasonic controller






Ultrasonic application wand



#### **Vapor Blast**

- Parts were blasted with a slurry of sand and water
- This method was found ineffective





Parts after blasting

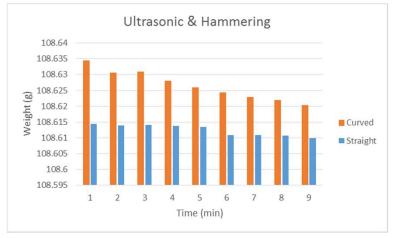


Vapor Blast Station

W.M. KECK CENTER



#### **Ultrasonic vibration and Hammering**


- Testing consists of 1 minute ultrasonic vibration followed by 1 minute of hammering
- Effective after the first application for straight channels
- Effective after 6 minutes in curved channels



1 minute ultrasonic vibration



1 minute rubber mallet





Light was shown through the holes to assess powder removal

12



#### **Chemical etching**

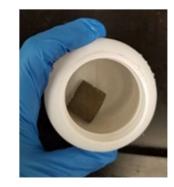
- Two etchants were tested, Kroll's reagent and Kellers etch
- Solutions were applied directly to specimen, no change was observed after 60 seconds
- Specimens were placed in both solutions for 22 hours; no effect





After Kellers etch

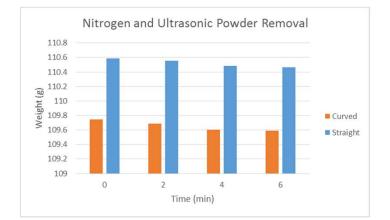



After Kroll's reagent

#### **Kellers** Etch

- 190 mL Distilled water
- 5 mL Nitric acid
- 3 mL Hydrocloric acid
- 2 mL Hydrofluoric acid

#### Kroll's Reagent

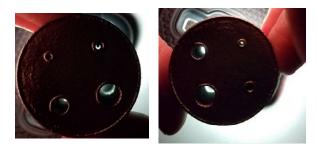

- 92 mL Distilled water
- 5 mL Nitric acid
- 2 mL Hydrofluoric acid





#### Liquid Nitrogen and Ultrasonic

- Parts were placed in liquid nitrogen for 30 seconds and followed by 2 minutes ultrasonic vibration
- All the holes were cleared after the first application










Parts dipped in liquid nitrogen



Holes after liquid nitrogen and ultrasonic vibration

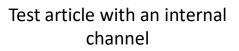
## UEP

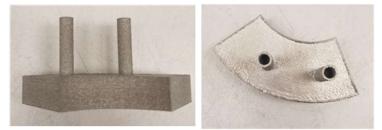
### THE UNIVERSITY OF TEXAS AT EL PASO

#### **Powder Removal: Conclusion**

• Design complexity and wall thickness can inhibit these methods

| Testing Method               | Results                                   |
|------------------------------|-------------------------------------------|
| Nitrogen & Ultrasonic        | Effective-Best                            |
| Powder Recovery System (PRS) | Effective-Big orifices & Line of<br>sight |
| Ultrasonic                   | Effective-Time Consuming                  |
| Ultrasonic & Hammering       | Effective-Time Consuming                  |
| Vapor Blast                  | Ineffective                               |
| Chemical Testing             | Ineffective                               |




#### **Powder Removal Process**

- Powder Removal procedure was finalized
- An article was designed to test the procedure

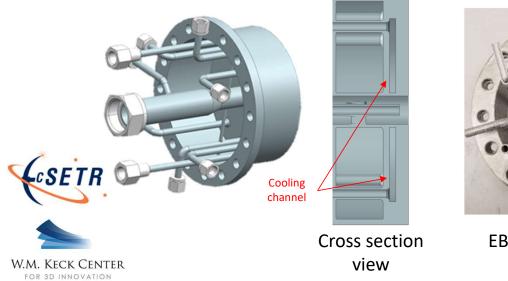


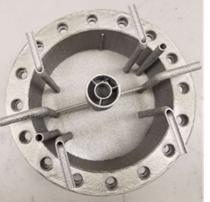




| Sample Part           | Weight (g) |
|-----------------------|------------|
| Before PRS            | 88.6       |
| After PRS             | 88.33      |
| After PRS 2           | 88.05      |
| After Ultrasonic      | 84.64      |
| After Liquid Nitrogen | 84.44      |




Sectioned the part for visual inspection


16



#### **Powder Removal Process**

 The procedure was performed on an EBM fabricated injector with an internal cooling channel

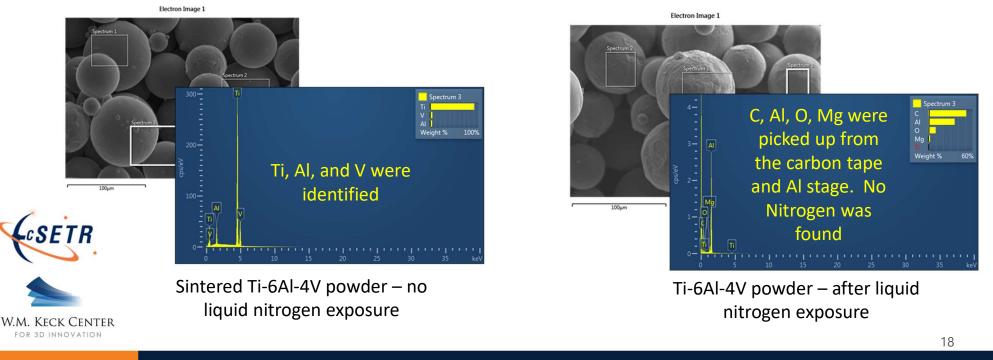




EBM fabricated fuel injector



Injector submerged after LN<sub>2</sub> pour


| Weight Of Sample Injector | Weight (Ib) |
|---------------------------|-------------|
| With Supports             | 3.144       |
| After Support             | 2.3         |
| After PRS                 | 2.222       |
| After Ultrasonic          | 2.0922      |
| After Liquid Nitrogen     | 2.076       |

## UEP

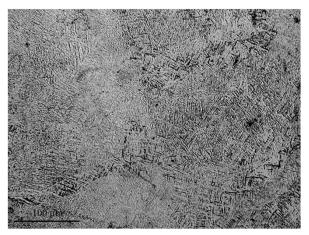
### THE UNIVERSITY OF TEXAS AT EL PASO

#### **Powder Characterization**

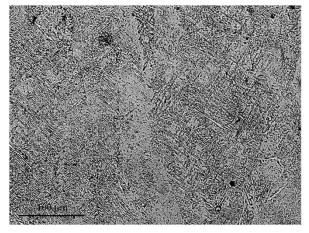
 Energy-dispersive X-ray spectroscopy (EDS) was used to check powder for nitrogen contamination






#### **Powder Characterization**

- Powder properties were measured
  Flow rate following ASTM B213
  Apparent density ASTM B212


|                            | Measured by manufacturer | Mean measured control group | Mean measured<br>LN2 |
|----------------------------|--------------------------|-----------------------------|----------------------|
| Flow rate<br>(sec/50g)     | 24                       | 21.8                        | 21.6                 |
| Apparent<br>Density (g/cc) | 2.54                     | 3.00                        | 3.02                 |

• Microstructure was analyzed – samples were etched with Kroll's reagent





Not exposed to liquid nitrogen



Exposed to liquid nitrogen

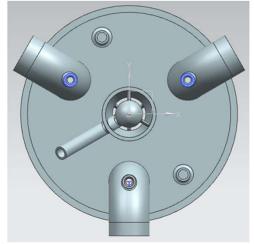


#### **Mechanical Testing**

- Tensile test samples were machined and tested according to ASTM E8/E8M
- Two groups were tested, not exposed to liquid nitrogen and exposed
- Each group consisted of six samples

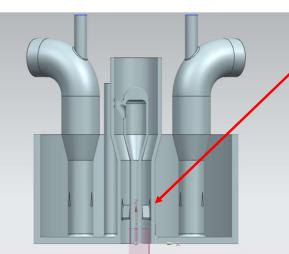


#### Tensile test specimen

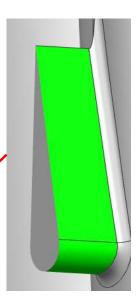

| No Liquid Nitrogen              | Mean    | Standard<br>Deviation |
|---------------------------------|---------|-----------------------|
| Elastic Modulus (GPa)           | 115.50  | 5.99                  |
| Yield Strength (MPa)            | 962.12  | 26.14                 |
| Ultimate Tensile Strength (MPa) | 1007.12 | 10.81                 |
| Percent Elongation (%)          | 8.63    | 2.70                  |
| Liquid Nitrogen Exposure        | Mean    | Standard<br>Deviation |
| Elastic Modulus (GPa)           | 116.33  | 3.59                  |
| Yield Strength (MPa)            | 972.83  | 38.40                 |
| Ultimate Tensile Strength (MPa) | 1015.33 | 3.86                  |
| Percent Elongation (%)          | 9.23    | 2.95                  |






## Low NO<sub>x</sub> Injector v1.0

- Designed in serial
  - Conventionally designed for fluid considerations
  - Features to improve manufacturability were additions

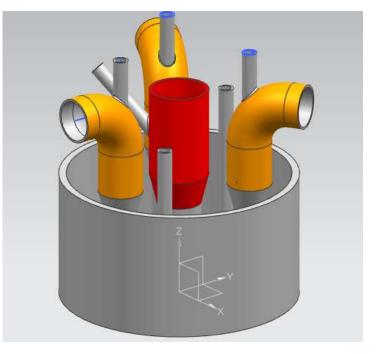



W.M. KECK CENTER FOR 3D INNOVATION

Top view of Injector



Cross section of Injector



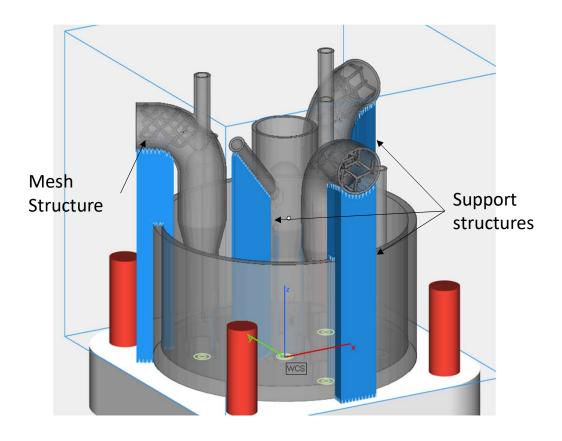

Airfoil spoke design difficult to fabricate conventionally



#### Design v1.0

- Fuel inlets in orange are difficult to additively manufacture and required modifications
  - The 90° turn require internal support
- Main fuel inlet in red is a good design for AM
- Nozzles were included in the design to prevent flash back

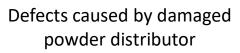


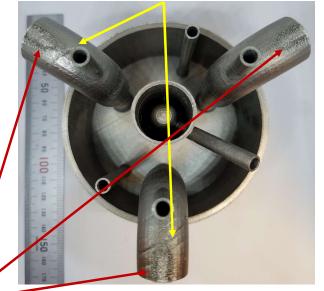




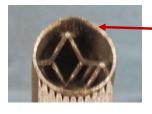

#### **Design v1.0 - Supports**

- Materialise Magic's was used for build preparation
- Mesh structures were added eliminate the need for internal supports
- Supports were modified for easier removal







#### **Design v1.0 - Printing**

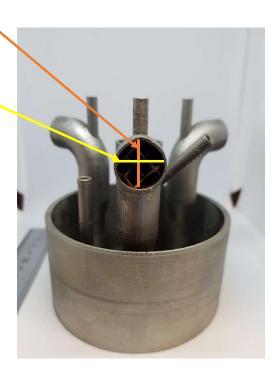
- Parameters were not optimized for the mesh structure and damaged the powder dispenser
  - The mesh overheats and warps
- The mesh did not provide enough support to prevent warping










Warping from insufficient support



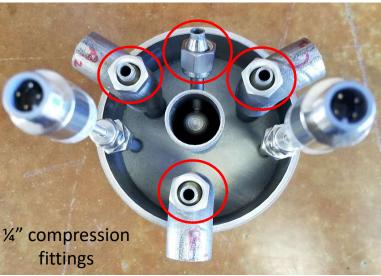
Large

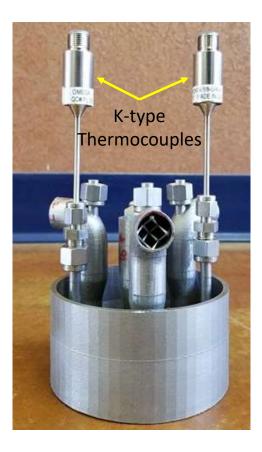
#### Design v1.0 - Metrology

|  |                      | Diameter               |                         |                   |                  |  |
|--|----------------------|------------------------|-------------------------|-------------------|------------------|--|
|  |                      |                        |                         | Small<br>Diameter |                  |  |
|  | Big diameter<br>(mm) | Small diameter<br>(mm) | Design diameter<br>(mm) | Big error<br>%    | Small error<br>% |  |
|  | 19.45                | 18.65                  | 19.05                   | 2.1               | 2.1              |  |
|  | 19.33                | 18.46                  | 19.05                   | 1.47              | 3.10             |  |
|  | 19.35                | 18.35                  | 19.05                   | 1.57              | 3.67             |  |



Side View




#### Design v1.0 – Fittings and Sensors

- K type thermocouples were installed
- 1⁄4" compression fittings were installed on all oxidizer inlets



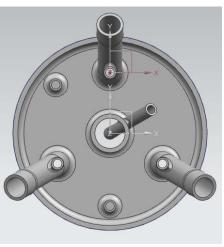




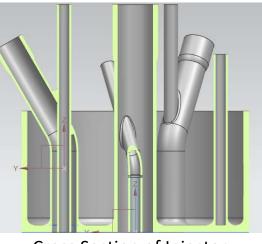


#### Design v1.0 – Flange

• A flange was welded on the injector to fit the test set up





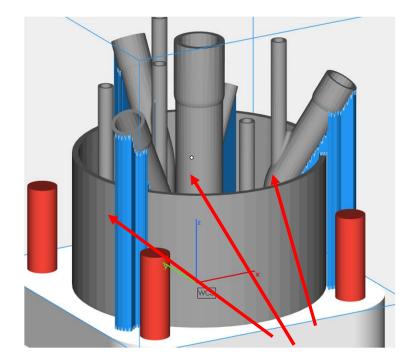

### Low NO<sub>x</sub> Injector v2.0

Collaboratively designed – accounted for AM manufacturing constraints



Top View




Cross Section of Injector





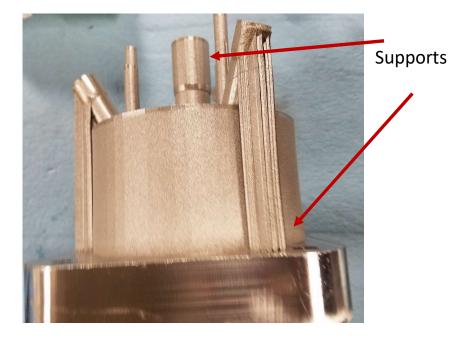
#### **Design v2.0 - Supports**

- External supports were added
  - Internal supports were not required
- No mesh structures or other additions were required





Supports




#### Design v2.0 - Printing





Top View



Side View



### Conclusion

- The most effective powder removal method is a combination of liquid nitrogen and ultrasonic
- Liquid nitrogen exposure did not effective the mechanical properties, or microstructure of Ti-6Al-4V
- Collaborative design is the best path forward to unlock the potential of additive manufacturing





#### **Future Work**

- Develop test plan for injector design v1.0
- Test injector design v1.0
- Finish fabrication and injector design v2.0
- Test injector design v2.0





#### Acknowledgements



PI: Dr. Ahsan Choudhuri







Co-PI: Dr. **Ryan Wicker** 



Manager: **Philip Morton** 



Former Manager: Jorge Mireles



Post Doc: Mohammad Hossain



UG to grad student: Undergrad student: David Saenz Jaime Torres



Masters student: Syed Zia Uddin







# THANK YOU QUESTIONS?



34