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Presentation Outline
NETL RIC Current Activity Summary for Systems Engineering & Analysis, Energy 
Conversion Engineering, Materials Science & Engineering 

• Introduction

• Combined Cycle DPE Systems - Scoping & Analysis 

• Oxy-Fuel Combustion Plasma Conductivity 

• Multi-phase HVOF Simulation

• MHD Electrodes & Testing

• Photoionization Simulation & Experiment

• Conclusion
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Introduction

P is the power density
B is applied magnetic field
σ is gas-plasma conductivity
u is gas-plasma velocity

Fuel 
+

oxygen

𝑃 ∝ 𝜎𝐵2𝑢2

Goal: Determine if  MHD Power Generation is a technically feasible option for future coal-

power generation and develop a technology road map to get there

Objective: Produce engineering data sets, simulation tools and materials and perform a robust 

performance assessment for the technology

Approach: Apply systems level modeling to screen the various technology options; Develop, 

utilize, and validate simulations to predict the performance of  components in those systems



4

• Objective: Identify DPE systems that meet USDOE cost of  electricity (COE) 
goals, as well as those that provide other benefits (modularity, low water etc.)

• Present study focused on DPE systems with carbon capture

• Expanded FY18 study to add non-capture DPE systems

• Approach: Use simplified analyses to direct NETL’s future detailed systems 
analyses towards promising systems that incorporate 
DPE/magnetohydrodynamics (MHD) in new and potentially beneficial ways

• Investigated both open and closed cycle MHD, with coal and natural gas fuels

• Analyzed with assistance from DPE experts from NETL and universities

• Qualitative analysis phase included:

• Evaluations of  15 systems against 14 qualitative rating criteria

• Down-selection of  7 promising configurations for semi-quantitative analysis

• Semi-quantitative analysis phase included:

• Development of  “Black box” component and system modeling approach using Aspen Plus 

• Selection of  several NETL non-MHD reference cases for comparison basis

• Templates for performance reporting, mass/energy balances, and stream table generation

• Approximate MHD channel sizing and component costing for open cycle MHD options

DPE Systems Scoping Study
Objectives and Methodology

DPE System Concept

Baseline DPE with Oxy-combustion, DPE-AUSC

CO2 Recycle DPE System*

Natural Gas DPE System w/Recycle

High Potassium Biomass Seeding

Top Gasification DPE Steam Combined Cycle

DPE Topping w/ Coal Gasif. and Fuel Preheater

Tail Gasification DPE/GT/ST

OC Disc DPE/Steam Cycle w/ CO2 Recovery

Photoionization DPE

Seedless DPE Power Generation*†

Pulse Detonation DPE*†

Noble Gas Closed Cycle DPE

Triple cycle: OC DPE/CC DPE/AUSC Steam

Triple cycle: SOFC/DPE/Steam

Closed Cycle DPE/Steam Plant

DPE and sCO2 Bottoming Cycle

* External collaborator    † Deferred to FY18
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Scoping Study Efficiency Results

• Option 2 (CO2 Recycle) and Option 5 (Top 
Gasification) both outperform the baseline oxy-
combustion system (Option 0)

• All MHD systems have higher efficiency than 
reference non-MHD cases

• Potential for further improvement with higher 
channel current density (“+” Options)
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Natural Gas
Natural Gas + SOFC

• Option 3 (open cycle MHD) and Option 15 
(closed cycle MHD) are less efficient than the 
baseline NGCC system with CCS

• An advanced closed cycle MHD system (Option 
15+) competitive with NGCC+CCS

• SOFC systems have much higher efficiency, but 
no improvement from MHD
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Combustion & Ionization Model
Predictive Model

• Electrical conductivity sub-model developed using existing 
approaches and updated MTCS data (Qi) (Itikawa, Spencer, Collins)

• Subject of 2017 C&F paper1

• Lack of relevant experimental data necessitates direct validation 
(conductivity, electron #, temp)

• Sub-model has been integrated in OpenFOAM combustion model
• Uses rhoreactingBuoyantFoam
• Includes air entrainment in
• Seed input modeled as gas phase

1

𝜎
=

1

𝜎𝑒𝑛
+

1

𝜎𝑒𝑖

𝜎𝑒𝑛 =
𝑒2𝑛𝑒

𝑚
8𝑘𝑇

𝜋𝑚

1/2
σ𝑖=1
𝑁 𝑛𝑖𝑄𝑖

𝜎𝑒𝑖 = 1.975
𝑛𝑒𝑒

2

𝑣𝑒𝑖

1Bedick, C.R., Kolczynski, L., Woodside, C.R., “Combustion plasma electrical conductivity model development 
for oxy-fuel MHD applications”, Combustion and Flame 181 (2017) 225–238.

Model considers both electron-
neutral and electron-ion 
contributions

Image of Flame Model of Flame
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Combustion and Ionization
Experimental Method & Results

Gas dist.

Liquid 
Dropout

BP control

Diffusion dryers

Liquid 
atomizers

O2 MFC

Air MFC

AR MFC

CO MFC

H2 MFC

CH4 MFC

(shroud)

Syringe/pump

Emission-absorption spectroscopy:
• K atom #’s to verify seed delivery, 

construct profiles
• Gas temperatures
• Must consider effects of path-

integrated measurement, K-band 
props for air-combustion

Langmuir probe (SLP, DLP):
• K+ ion (~e-), e- temp
• Quantitative values from IV trace 

using appropriate probe model
• Rapid probe insertion to avoid tip 

melting
• Fresh Pt tips produce expected results
• Cooling from cold probe can affect e-

temp/conductivity

Experimental Configuration
• Oxy-fuel Hencken burner
• Custom K2CO3 seed delivery system
• Provides wide range of combustion plasma 

conditions relevant to DPE

(21-100% O2)

Emission-absorption
spectroscopic system

Hencken burner

Langmuir double probe
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“Highly negative” = completely 
within saturation region

Experimental Method & Results

Combustion and Ionization

• Spectroscopic results for 100% O2, ~0.01% K compare well with OpenFOAM model 
• Ion/electron results match equilibrium predictions at 25 mm (ni ~2-3 x 1019 #/m3, Te ~3000 K)

• Probe model (thin sheath-convection) fit to SLP saturation region to determine ion #’s
• DLP slope through 0V dictates electron temp, conductivity
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High Velocity Oxy-Fuel (HVOF) System
Multi phase combustion modeling with HVOF – Set-up & Simulation Set-up

Simulation setup• Customized Praxair JP 8200 HVOF utilized
• Kerosene-Oxygen Combustion
• 6-8 bar combustion
• ~160 kWt Input Power 
• Cold copper wall heat transfer

• Use calorimetric method from cooling water 
temperature and mass flow measurements

Cooling H2O in
Cooling H2O out

Kerosene

Combustion
Chamber

CD
Nozzle Barrel/Channel

Atomizing
Injector

Air

Exit

Establish a baseline cold wall heat transfer rate for future supersonic oxy fired MHD channels

• Customized OpenFOAM model (userSprayFoam)
• 11 species with 10 reactions for combustion of Kerosene 

with surrogate dodecane (C12H26) from Choi2011AIAA
• PaSR (partially stirred reactor) combustion model
• 2D-axisymmetric and 3D-45degree domains

O2

Oxygen
Plenum
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High Velocity Oxy-Fuel (HVOF) System
Multi phase combustion modeling with HVOF –Simulation Results

• Coarse Mesh Simulations
• Rotate the 2D mesh (10K cells) and generate the 3D mesh  (180K cells)
• Mesh refinement (ratio = 0.5, 5 layers addition) at the boundary wall due to large gradient of T near wall

Fuel Oxygen

2D Gas fuel inlet_1 inlet_1

2D Liquid fuel injector inlet_1

3D Gas fuel 100% Inlet_2 75% inlet_1
25% inlet_2

3D Liquid fuel Injector 75% inlet_1
25% inlet_2

2D fuel contour

3D fuel stream tracer

inlet_1 inlet_2

2D_inlet 3D_inlet
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HVOF Total Wall Heat Transfer
Experiment versus simulation

• 3D cases release more energy and leads to greater wall 
heat transfer – likely due to flame morphology and 
combustion chamber residence time (next slide)

• Currently investigating the effect of the liquid fuel 
droplet properties (droplet size distribution, injection 
speed, injection nozzle shape) on combustion efficiency

kW 2D Gas fuel (φ = 1.16) 3D  Gas fuel (φ = 1.16)

Reaction Heat 119.82 126.06

Outer Wall -32.10 -41.29

Inner Wall -0.62 -2.21
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• Comparison of  2D_ofmix and 3D_ofmix of  case φ = 1.16

• The higher heat transfer is shown at combustor for 3D case 
while it is consistent at barrel

• The higher combustion efficiency due to concentrated 
mixture and physical flame shape produces more higher 
heat transfer at combustor wall

• The distribution of  oxygen into inlet_1 : inlet_2 (currently, 
= 3:1) and fuel droplet size distribution will change the 
combustion efficiency 

• In future also add: soot production and oxidation with 
radiation, mesh refinement

Wall heat transfer through wall for φ=1.16
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• CeO2-Y2O3 and CeO2-Gd2O3
based ceramics evaluated 

• Impedance spectroscopy 
showed compositions rich in 
CeO2 shows good 
conductivity values ~10 S/m 
for T>1500 K

• At low temperatures, 
electronic conductivity 
dominated and transitioned 
into an ionic conduction 
mechanism above ~900 K due 
to oxygen non-stoichiometry 

CeO2-base electrode materials
Electrical characterization
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• Oxide powders were mixed with 
K2CO3, pressed into green 
bodies and then fired at 1773 K 
for 1 hour

• After annealing in a K2CO3 
environment, CeO2, Y2O3, and 
Gd2O3 did not show any signs 
of  reaction with K2CO3

• Overall, tests suggest that ceria-
based ceramic electrodes show 
promise for use as electrodes in 
MHD power systems 
• Next step: HVOF exposure testing

CeO2-based electrode materials
Potassium Reaction Testing

XRD patterns taken from (a) Gd2O3 (b) Y2O3 (c) CeO2 and (d) 
ZrO2. Peaks marked with a  can likely be attributed to the 
formation of K2Zr2O5.
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• A new holder has been designed and built to test disc 
coupons of  electrodes

• Nominal disc size: 1 cm dia. x 0.3 cm thick

• Adjustable spring loading of  disc to a MgO lip

• Hot zone made of  custom caste low density MgO

• Test conditions under “free jet”

• Gas velocities est. 1000-2000 m/s

• Tstatic gasses est. 2750 Kelvin

• Pressures est. 1atm

• Measured electrode materials data can be used as input to 
finite element modeling (FEM)

• Spacers (dwg #10,11,12) selected with desired thermal conductivity 
to reach some target temperature

• Maximum sample temperature will be depend on sample thermal 
conductivity

• Holder can be positioned by micrometers toward jet edge

• T gradients at jet edge ~300K/mm according to CFD modeling

• Hot side surface temperatures monitored by custom 2-color 
pyrometer

Electrode Material Testing
HVOF exposure testing

Old holder
With seed

Old holder
No seed

New holder
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• Maximum sample temperatures
• Spacer conductivity 

• Provides more control with  higher k samples

• For k = 1 sample (e.g, ceria)
• Should hit target service temp >1800 C

• For k = 10 sample
• In service max temps ~1100 to 1900K.

• Continued model refinements underway

• Validation testing now started

FEM of new holder
Showing expected exposure temperatures and heat fluxes

If the sample k = 1 W/mK If the sample k = 10 W/mK

q_0=h∗(T_ext−T)  
Convection eq

T_ext = 2750K

[K] [K]

W/m^2W/m^2
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Photoionization Enhancement
Creating a non-equilibrium plasma using photons.

• Combustion driven MHD plasma is a partially ionized 
system which rapidly reaches thermal equilibrium

– Very little seed introduced thermally ionizes (~1-3% of it)

• Ionization potential of K is 4.34 eV

– “photoionization” of K using UV photons < 285nm

– UV source must be efficient enough to make sense for 
bulk ionization > 10% efficiency past gross estimate 
(Rosa, 1963)

• Directed energy with lasers = Good spatial & 
temporal control

– Boundary layer arc control and manipulation possible

• “Help” electrons travel from plasma to cooler electrode to 
reduce loss mechanism of voltage drop

• Voltage drop must be overcome to make this work at small 
scale

– Note that due to arcs the boundary layer is already likely 
in thermal non-equilibrium

Free electron

Potassium

Thermal 
excitation

Emission

Voltage drop plot from UTSI-IEE Testing reported by Lineberry, 1988.

0.32m x 0.145m Segmented 
Faraday Generator. Sub-sonic 
oxy-fuel, hot ceramic 
electrodes ~32.5MWt

K Atoms

Electrons

With thermal Ionization of K
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CFD Model with photoionization
Enhancing a partially ionized seeded oxy-combustion plasma in thermal equilibrium

• OpenFOAM CFD model of  photoionization
• Customized solver based on reactingParcelFoam and 

sonicFoam

• Fluid – conservation of  mass, species, momentum and energy

o
𝜕𝜌

𝜕𝑡
+ 𝛻 ∙ 𝜌𝒖 = 𝑆𝑝

𝜌

o
𝜕𝜌𝑖

𝜕𝑡
+ 𝛻 ∙ 𝜌𝑖𝒖 + 𝜌𝑖𝒗𝒊 = 𝜅𝑅𝑖 + 𝑆𝑝

𝑖

o
𝜕𝜌𝒖

𝜕𝑡
+ 𝛻 ∙ 𝜌𝑢𝑢 = −𝛻𝑝 + 𝛻 ∙ 𝝉 + 𝑆𝑝

𝑢

o
𝜕𝜌𝐸

𝜕𝑡
+ 𝛻 ∙ 𝜌𝒖𝐸 = −𝛻 ∙ 𝒒 − 𝛻 ∙ 𝒖𝑝 + 𝛻 ∙ 𝒖 ∙ 𝝉 + 𝑆𝑝

ℎ

• Turbulence - k-ω SST turbulence model with a high-Mach number 
compressibility correction 

o
𝜕𝜌𝑘

𝜕𝑡
+ 𝛻 ∙ 𝜌𝑢𝑘 = 𝛻 ∙ 𝜇 +

𝜇𝑡

𝜎𝑘
𝛻𝑘 + 𝑆𝑘

o
𝜕𝜔

𝜕𝑡
+ 𝛻 ∙ 𝜌𝑢𝜔 = 𝛻 ∙ 𝜇 +

𝜇𝑡

𝜎𝑘
𝛻𝜔 + 𝛽 −

𝐾2

𝜎𝜔 𝐶𝜇

𝜔

𝑘
𝑃𝑘 − 𝛽𝜔2

Reaction Model

Methane
Oxidation

Modified Jones-
Lindstedt

CH4 + 0.5 O2 → 2 H2 + CO
H2O + CH4 → 3 H2 + CO
H2O + CO ↔ H2 + CO2

H2 + 0.5 O2 ↔ H2O
O2 ↔ 2 O
H2O ↔ H + OH

Potassium
Ionization

K+ + e + M ↔ K + M
OH + e + M ↔ OH- + M

Photoionization K + hν(248nm) → K+ + e

Photo-ionization reaction using the Arrhenius equation
o 𝑃 = 𝑐𝑄𝑝ℎ 𝑛𝜆 [𝐾]

o 𝑃 = 𝑘𝑓𝑛𝜆 𝐾 = 𝐴𝑇𝑏𝑒 Τ−𝐸𝑎 𝑅𝑇 𝑛𝜆[𝐾]

o Qph =3.37×10−24 m2 from literature

-> 𝑐𝑄𝑝ℎ = 𝐴𝑇𝑏𝑒 Τ−𝐸𝑎 𝑅𝑇

-> A = 1.01×10−15 m3/s,  b = 0,  Ea = 0
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Laser and thermal radiation sub-model
Radiative Transfer using discrete transfer method (DTM) and P1-method

• Collimated radiation from the laser and thermal radiative 
o 𝐼 Ƹ𝑠, 𝜆 = 𝐼𝑐 Ƹ𝑠, 𝜆 + 𝐼𝐷 Ƹ𝑠, 𝜆

• Collimated radiation using Beers Law
o

𝑑𝐼𝑐

𝑑𝑠
+ 𝜅 + 𝜎 𝐼𝑐 = 0 → 𝐼𝑐 𝑠 = 𝐼𝑐 𝑠 = 0 𝑒 − 𝜅+𝜎 𝑠

• Diffuse radiation using a P1-method including interaction with collimated 
radiation
o Ƹ𝑠 ∙ 𝛻𝐼𝐷 + 𝜅 + 𝜎 𝐼𝐷 = 𝜅𝐼𝐵 + 𝜂 +

𝜎

4𝜋
 𝐼𝐷 ෝ𝑠𝑖 𝛷 ෝ𝑠𝑖 , Ƹ𝑠 𝑑𝛺 +

𝜎

4𝜋
𝛷 ෝ𝑠𝑖 , Ƹ𝑠 𝐼𝑐

• Absorption coefficient using the partial Planck mean coefficients from 
RADCAL
o 𝜅 = 𝑄𝑝ℎ𝑁𝐴[𝐾]
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Model and Experiment Set-up
For Testing Photoionization

• Free jet shock structures impact local T and 
species

• Multiple laser passes used to increase response 
and overcome flow non-uniformities

• Heat Loss results checked against HVOF heat 
balance data reported in 2017

• Our  main interest is ion-electron recombination 
time following laser pulse
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Photoionization HVOF Model & Experiment
Results

• Time resolved spectroscopy with nanosecond level time resolution 
used in the experiment
• Measure emission for K excitation at ~767nm doublet as proxy for changes 

in free electrons 

• model and experiment show boost during laser pulse 

• Model shows persisting non-equilibrium plasma following laser pulse,  
experiment does not.

Experiment

Model for various 
laser powers

Laser 
On

Experiment
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• Use quartz test cell containing Rb under 
high vacuum (will also test K, Na, and Cs)

• Test at ~330K, Expect p ~ 8*10^-6 Torr

• Photo-ionization achieved

• Recomb time lasts ~6 microseconds 
following laser

Photoionization Alkali Vapor Experiment
Investigating why HVOF model and experiment recomb time differed.

PL Spectrograph/ICCD

Excimer laser 
(248 nm)

Planned Follow-up studies
• Model this system
• Investigate non-linear effects

• Surface ejection of alkali?
• Other alkalis
• Sensitivity to laser power and cell 

temperature
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• Coal power systems with DPE have similar efficiencies and can offset O2/CCS 
efficiency cost
• MHD power density increases will improve efficiency further
• Cost and difficulty for system may become determining factor for further development

• Seeded Oxy-methane combustion conductivity measurements consistent with 
published model so far

• HVOF Wall heat transfer very sensitive to modeling parameters
• CFD uncertainty quantification needed to parameterize this term for performance evaluation

• Electrode samples fabricated which do not react with potassium and show sufficient 
electrical conductivity (in static testing)

• HVOF materials test rig model shows wide range of  service temperatures possible
• Though highly depend on the material’s thermal conductivity

• Model and experiment of  non-equilibrium plasma generation in combustion products 
did not agree
• Further experimentation underway to understand this

Conclusion
This project expected to continue for another 2 years before a go/no-go decision
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