

### University of Alabama's EITD Group

#### **Complex System Design and Integration**

Consistently delivered on well over \$80M of NASA contracts over past 8-10 years



- Polar (+4C to -95C)
- GLACIER (+4C to -160C)
- MERLIN (+48.5C to -20C)
- Rapid Freeze (-185C)
- Iceburg (-95C)









### **Project Team - Overview**



#### **Multidisciplinary Team of:**

- Faculty
- Full-Time Staff
  - Engineers
    - Mechanical
    - Electrical
    - Systems
    - Materials
    - Computer Science
  - Highly Trained Technicians
- Hand-Picked Students





### **Project Team – Expertise**

#### Metrohm

A Leading Manufacturer of High Precision Instruments for Chemical Analysis

- Swiss based parent company
- Extensive Application Knowledgebase
  - Application Notes
  - Highly Educated & Experienced Support Staff
- Electrochemistry Instruments
  - Benchtop 884 VA Voltammetry Unit
  - On-Line ADI2045 VA Process Analyzer







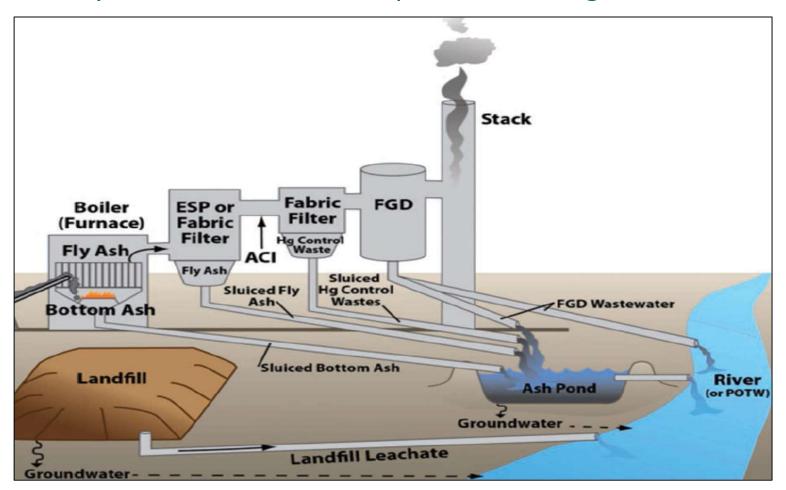
#### **Unique Resources**

#### Water Research Center (WRC)

- Opened in 2012 by Georgia Power & Electric Power Research Institute (EPRI)
  - Operated by Southern Research
- Located on-site at Georgia Power's Plant Bowen
  - 9th Largest U.S. Power Plant in Net Generation (3.38 MW)
- 7 Focus Areas to include:
  - Low Volume Wastewater
     Treatment
  - Moisture Recovery








- Zero Liquid Discharge
- Water Modeling, Monitoring, & Best Management Practices



#### **Problem Statement** - Overview

Key waste streams from updated USEPA guidelines.



Proposed Effluent Guidelines for the Steam Electric Power Generating Category. 2015; Available from: http://water.epa.gov/scitech/wastetech/guide/steam-electric/proposed.cfm.



#### **Problem Statement** – *EPA Requirements*

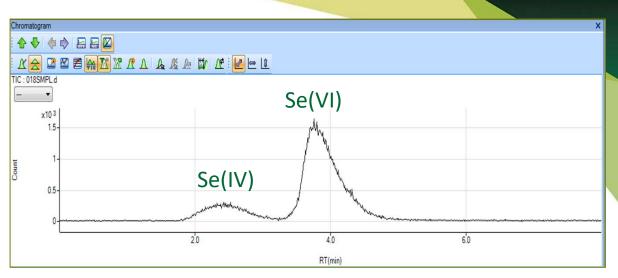
# Steam Electric Power Generation Effluent Guidelines for Coal-fired Power Plant Wastewater

| WASTE STREAM                    | PARAMETER              | DAILY MAXIMUM | 30-DAY AVERAGE |
|---------------------------------|------------------------|---------------|----------------|
|                                 | As (μg/L)              | 11            | 8              |
| FGD WASTEWATER<br>FOR DISCHARGE | Se (µg/L)              | 23            | 12             |
|                                 | Hg (ng/L)              | 788           | 356            |
|                                 | NO³/NO² as N (mg/L)    | 17            | 4.4            |
|                                 | As (μg/L)¹             | 4             |                |
| FGD WASTEWATER                  | Se (µg/L)              | 5             |                |
| UNDER VOLUNTARY<br>INCENTIVE    | Hg (ng/L) <sup>1</sup> | 39            | 24             |
|                                 | TDS (mg/L)             | 50            | 24             |

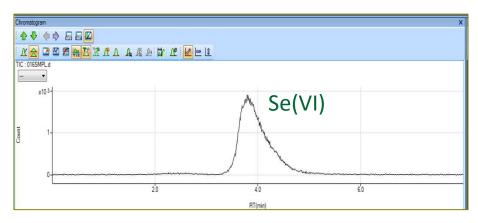
Proposed Effluent Guidelines for the Steam Electric Power Generating Category. 2015; Available from: http://water.epa.gov/scitech/wastetech/guide/steam-electric/proposed.cfm.



# **Project Update**


Change in Strategy

### **Initial Plan:**


### 1. UV Digestion

- a) Destroy Organics
- b) Se Species Conversion

#### 2. Remove Interferences



Bowen FGD Water Sample



Se(IV) was converted to Se(VI) after UV irradiation



### **Project Update**

Change in Strategy

### New Plan:

- Focus on Method Development for Metrohm 884
   VA Semi-Auto
  - a) Hanging Mercury Drop Electrode
  - b) Cyclic Stripping Voltammetry (CSV)
- 2. Focus on Se Species Conversion for Detection
  - a) Se(VI) -> Se(IV)
  - b)  $Se(0) \rightarrow Se(IV)$





#### **Focus on Determination Method 1st**

#### Mechanism for Selenium Determinations

#### Typical Reagents Required:

- Cu Standard
- Ammonium Sulfate
- EDTA

1) 
$$H_2SeO_3 + 6H^+ + 6e^- = H_2Se + 3H_2O$$

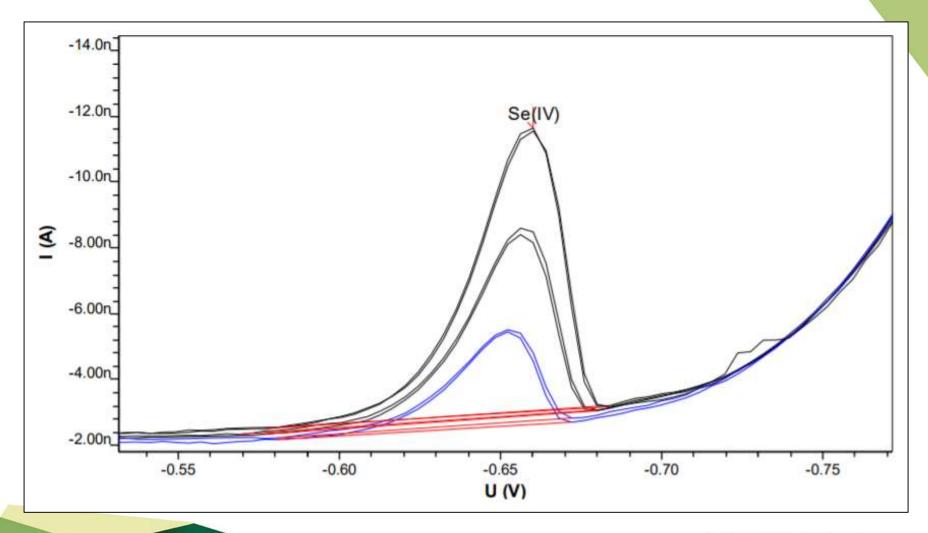
2) 
$$Cu(II) \rightarrow Cu(I) (-0.15 \sim 0.2 \text{ V})$$

3) 
$$2Cu(I) + Se(-II) = Cu2Se$$

4) 
$$Cu_2Se + 2H^+ + 2e^- = 2Cu^0(Hg) + H_2Se$$

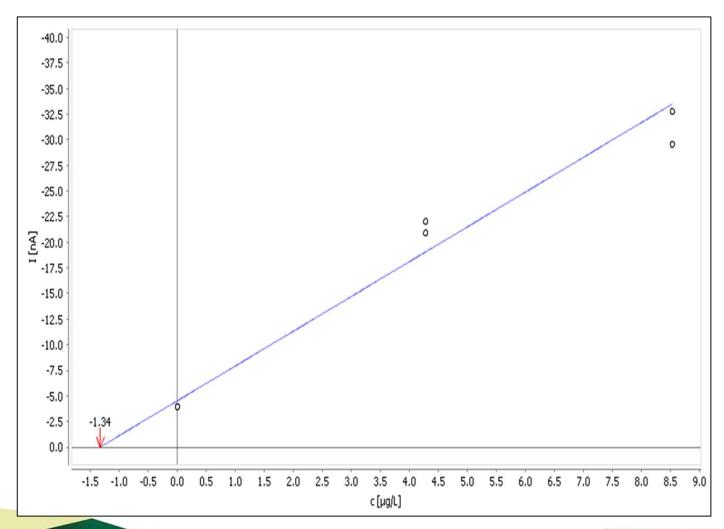
5) 
$$V = -0.70V$$




#### **Focus on Determination Method 1st**

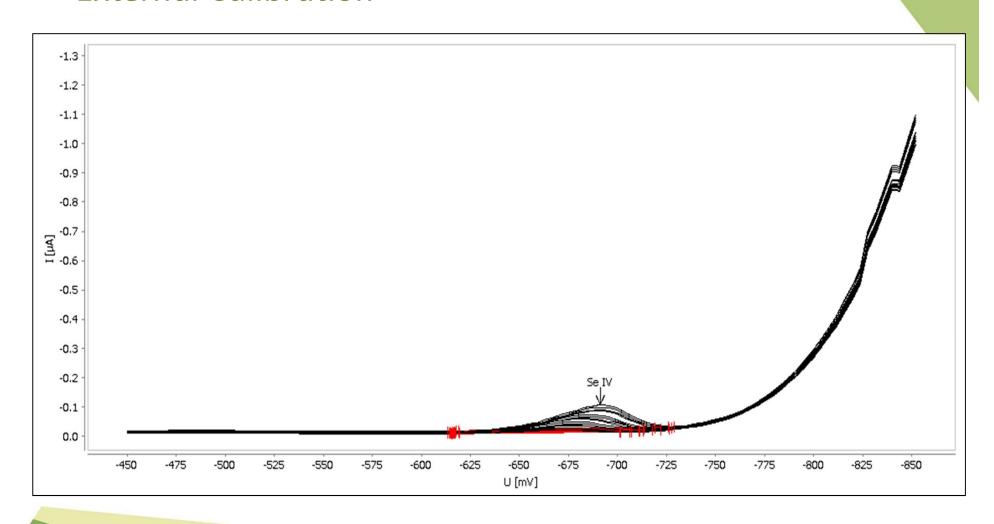
#### **Concentration Determination**

|             | External Calibration                                                                  | Standard Addition                                                                                                                                                                                                                                                                                                                |
|-------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advantages  | <ul><li>Easy to prepare</li><li>Quick</li><li>Widely used technique</li></ul>         | Overcome matrix differences                                                                                                                                                                                                                                                                                                      |
| Limitations | <ul> <li>Need to match matrix of<br/>calibration solutions<br/>and samples</li> </ul> | <ul> <li>Require at least three aliquots/runs for each sample         <ul> <li>Run lengths become much longer</li> </ul> </li> <li>Need to have some idea of the concentration in the sample prior to analysis         <ul> <li>Spike levels: 2-5X</li> <li>Precision and accuracy depend on spike levels</li> </ul> </li> </ul> |



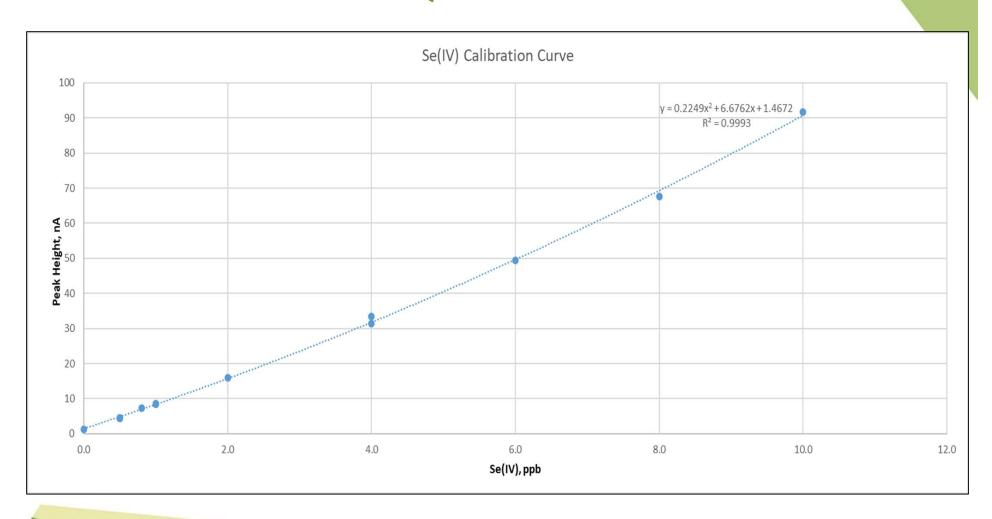

#### **Standard Addition**






#### **Standard Addition**






#### **External Calibration**





### External Calibration – Quadratic Curve Fit





### **External Calibration**

## Curve Fit *Accuracy*

| Calibration Standard Concentration (ppb) | Back<br>Calculated<br>(ppb) | Recovery (%) | Average<br>Recovery<br>(%) | Std Dev<br>(%) |
|------------------------------------------|-----------------------------|--------------|----------------------------|----------------|
| 0.0                                      | -0.03                       | N/A          |                            |                |
| 0.5                                      | 0.45                        | 90%          |                            |                |
| 0.8                                      | 0.84                        | 105%         |                            |                |
| 1.0                                      | 1.03                        | 103%         |                            |                |
| 2.0                                      | 2.03                        | 102%         | 100%                       | 4.2%           |
| 4.0                                      | 3.96                        | 99%          | 100%                       | 4.2%           |
| 6.0                                      | 5.97                        | 100%         |                            |                |
| 8.0                                      | 7.84                        | 98%          |                            |                |
| 10.0                                     | 10.08                       | 101%         |                            |                |



# **External Calibration** *Determination Accuracy*

 Se(IV) Spiked in Ultra-pure Water

Avg Error: 0.3 ppb

• Std. Dev. of Error: 0.13 ppb

| QC (ppb) | Determined (ppb) | Recovery<br>(%) | Avg.<br>Recovery<br>(%) | Std Dev<br>(%) |
|----------|------------------|-----------------|-------------------------|----------------|
|          | 0.95             | 119%            |                         |                |
| 0.8      | 0.95             | 119%            | 127%                    | 8.4%           |
| 0.8      | 1.08             | 135%            | 12/%                    | 0.4/0          |
|          | 1.09             | 136%            |                         |                |
|          | 2.34             | 117%            | 118%                    |                |
| 2        | 2.39             | 120%            |                         | 3.0%           |
|          | 2.29             | 115%            |                         |                |
|          | 2.45             | 123%            |                         |                |
|          | 6.25             | 104%            |                         |                |
| 6        | 6.28             | 105%            | 1020/                   | 1 /10/         |
| 6        | 6.23             | 104%            | 103%                    | 1.4%           |
|          | 6.07             | 101%            |                         |                |
|          | 10.29            | 103%            |                         |                |
| 10       | 10.31            | 103%            | 1040/                   | 1 20/          |
| 10       | 10.53            | 105%            | 104%                    | 1.2%           |
|          | 10.54            | 105%            | -                       |                |



# **Tolerance of High Dilution Factors** Raw FGD Wastewater Sample

• 0.62% Avg. Error

Se(IV) = 1265ppbFrom by LC-ICP/MS

| Dilution<br>Factor | Determine<br>d (ppb) | Corrected<br>for DF<br>(ppb) | Average (ppb) | StdDev (%) | Error<br>(%) |
|--------------------|----------------------|------------------------------|---------------|------------|--------------|
| 100                | 12.72                | 1272                         | 1258          | 1.63%      | 0.59%        |
| 100                | 12.43                | 1243                         | 1236          | 236 1.03%  | 0.55%        |
| 250                | 4.95                 | 1238                         | 1262 2.63%    | 2 620/     | 0.28%        |
| 250                | 5.14                 | 1285                         |               | 2.05%      | 0.20%        |
| 500                | 2.47                 | 1235                         | 1252          | 1 000/     | 0.99%        |
| 500                | 2.54                 | 1270                         | 1253          | 1.98%      | 0.39%        |



# Precision with Low Dilution Factors Biologically Treated FGD Wastewater Sample

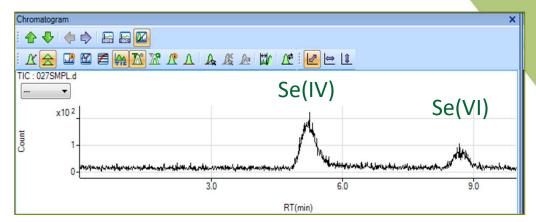
- Low Concentration, Low Dilution
- Reasonable Precision
- Se(IV) Only

| Dilution<br>Factor | Determined (ppb) | Average<br>(ppb) | Std Dev<br>(ppb) |
|--------------------|------------------|------------------|------------------|
| 4                  | 3.85             |                  |                  |
| 4                  | 3.44             |                  |                  |
| 2                  | 3.63             | 2.4              | 0.21             |
| 2                  | 3.55             | 3.4              | 0.31             |
| 1                  | 2.97             |                  |                  |
| 1                  | 3.22             |                  |                  |

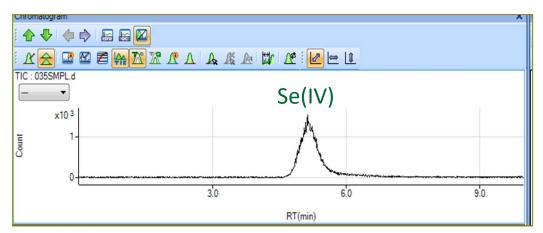


# **Low-Level Determination Accuracy**Biologically Treated FGD Wastewater Sample

 Se(IV) Spikes Demonstrate Accuracy of System with Treated FGD Wastewater


• Dilution Factor = 2

| Spike (ppb) | Determined (ppb) | Difference (ppb) | Error (ppb) | Error Std<br>Dev (ppb) |
|-------------|------------------|------------------|-------------|------------------------|
| 0           | 3.8              |                  |             |                        |
| 2           | 5.7              | 1.9              | -0.10       |                        |
| 2           | 6                | 2.2              | 0.20        | 0.17                   |
| 3           | 7.1              | 3.3              | 0.30        | 0.17                   |
| 4           | 7.9              | 4.1              | 0.10        |                        |




# Focus on Se Species Conversion for Detection Raw FGD Wastewater Sample

- Significant Amounts of Se(VI)
- Se(VI) -> Se(IV) Conversion
   Required for Analysis
- Proprietary Species
   Conversion Method
  - Validated with LC-ICPMS/MS



Se(IV)+Se(VI), Incomplete Conversion



Se(IV)+Se(VI), Complete Conversion



# Focus on Se Species Conversion for Detection Treated FGD Wastewater

- Frontier Bioreactor Backwash Sample
  - High Elemental Se Concentrations (Se(0) = 1270ppb)
- Proprietary Conversion Process
  - Multiple effective treatment methods explored
  - Validated with LC-ICPMS/MS

|               | Concentrations (ppb) | Treat<br>#1 | Treat<br>#2 | Treat<br>#3 | Treat<br>#4 | Treat<br>#5 | Treat<br>#6 |
|---------------|----------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Se(0)         | 1270                 | ND          | ND          | ND          | ND          | ND          | ND          |
| Spiked Se(VI) | 1258                 | ND          | ND          | ND          | ND          | ND          | ND          |
| Se(IV)        | ND                   | 2522        | 2472        | 2524        | 2508        | 2540        | 2597        |
| Average       | e Error (%)          | 1.1%        |             |             |             |             |             |
| Std D         | Dev (%)              | 1.0%        |             |             |             |             |             |



# **Detection Limit Experimentation**Spiked Ultra Pure Water after Conversion

- Se (VI) Spikes:
  - N=9 @ 10 ppb
  - N=2 @ 20ppb
- Se (IV) Spikes:
  - N=9 @ 10 ppb
- Calculated MDL:
  - 1.4 ppb 4.2 ppb

| Spike Conc.<br>(ppb) | Total Se<br>(ppb) | Avg. Error<br>(ppb) | Std Dev<br>(ppb) |  |
|----------------------|-------------------|---------------------|------------------|--|
|                      | 11.3              |                     |                  |  |
|                      | 9.5               |                     |                  |  |
|                      | 10.8              |                     |                  |  |
| 10,                  | 10.1              |                     |                  |  |
| 1                    | 10.1              | 0.48                | 0.62             |  |
| Se(VI)               | 10.7              |                     |                  |  |
|                      | 9.9               |                     |                  |  |
|                      | 9.5               |                     |                  |  |
|                      | 9.8               |                     |                  |  |
|                      | 10.7              |                     |                  |  |
|                      | 11                |                     |                  |  |
|                      | 9.5               |                     |                  |  |
| 10,                  | 10.3              |                     |                  |  |
| <b>1</b>             | 10.4              | 0.40                | 0.43             |  |
| Se(IV)               | 10.2              |                     |                  |  |
|                      | 10.1              |                     |                  |  |
|                      | 10                |                     |                  |  |
|                      | 10.4              |                     |                  |  |
| 20 50/1/11           | 21                | 0.00                | 1 27             |  |
| 20, Se(VI)           | 19.2              | 0.90                | 1.27             |  |



# **Total Se Determination Accuracy after Conversion**Raw FGD Wastewater Sample

VA Accuracy Comparison

• 5:1 Dilution

| Total Se (ppb) |        | Recovery         | Avg   | Avg. Error |
|----------------|--------|------------------|-------|------------|
| VA             | ICP-MS | (%) Recovery (%) |       | (%)        |
| 51.7           | 51.5   | 100.4%           |       |            |
| 48.1           | 52     | 92.5%            | 96.2% | 4.1%       |
| 60             | 62.7   | 95.7%            |       |            |



# Total Se Determination Accuracy after Conversion Raw FGD Wastewater Sample

- High Total Se (1500 ppb)
  - o From LC-ICP/MS
- High Dilution
  - Two Different Levels

| Dilution<br>Factor | Total Se<br>(ppb) | Average (ppb) | Std Dev<br>(%) | Avg.<br>Error (%) |
|--------------------|-------------------|---------------|----------------|-------------------|
| 239                | 1450              |               |                |                   |
| 239                | 1355              | 1419          | 3.7%           | 5.4%              |
| 239                | 1452              |               |                |                   |
| 192                | 1486              | 1494          | 0.71%          | 0.50%             |
| 192                | 1501              | 1737          | 0.7170         | 0.3070            |



# (Repeated) Low-Level Determination Accuracy Biologically Treated FGD Wastewater Sample

| Dilution<br>Factor | Determined<br>(ppb) | Average (ppb) | Std Dev<br>(ppb) |
|--------------------|---------------------|---------------|------------------|
| 4                  | 3.85                |               |                  |
| 4                  | 3.44                |               |                  |
| 2                  | 3.63                | 2.4           | 0.21             |
|                    | 3.55                | 3.4           | 0.31             |
| 1                  | 2.97                |               |                  |
| 1                  | 3.22                |               |                  |

 Proprietary Sample Prep Uses 5:1 Dilution

- Calculated LOQ:
  - Std Dev \* 10

| Spike<br>(ppb) | Determined (ppb) | Difference<br>(ppb) | Error<br>(ppb) | Std Dev (ppb) |
|----------------|------------------|---------------------|----------------|---------------|
| 0              | 3.8              |                     |                |               |
| 2              | 5.7              | 1.9                 | -0.10          |               |
| 2              | 6                | 2.2                 | 0.20           | 0.17          |
| 3              | 7.1              | 3.3                 | 0.30           | 0.17          |
| 4              | 7.9              | 4.1                 | 0.10           |               |



### **Project Milestones & Schedule**

- ~3mths remain in schedule to:
  - Procure Sample Preparation Prototype from Metrohm
  - Optimize Prototype System for Application
  - Perform Short-term In-Field Demonstration



#### The Way Forward

- 1. Complete Batch Process Validation (SR)
  - a) Raw FGD WW
  - b) Treated FGD WW
- 2. Hardware Implementation and Optimization (UAB/Metrohm)
- 3. Hardware Installation and Final Tuning at WRC Pilot Facility (UAB/SR/Metrohm)



# The Way Forward – UAB/Metrohm Prototype





# **Questions?**



