Physics-based Creep Simulations of Thick Section Welds in High Temperature and Pressure Applications

Thomas M. Lillo, PI, Testing & Validation Wen Jiang, Co-PI, Modeling and Simulation Idaho National Laboratory P.O. Box 1625 Idaho Falls, ID 83415

Thomas.Lillo@INL.gov

2018 NETL Annual Review Meeting for Crosscutting Research, April 10-12, 2017, Pittsburgh, PA

Date: April 11, 2018

DOE Award Number: FEAA90

Period of Performance: 07/2015-09/2018

Project Goals and Objectives

Goal: Develop modeling and simulation capabilities to describe/predict the creep behavior of thick section welds in Alloy 740H (a γ '- strengthened, Ni-based alloy for a-USC applications)

- Computational modeling development of physical processes involved in the creep of welds in Alloy 740H across length scales:
 - Diffusion
 - Dislocation motion and deformation
 - Microstructural evolution
 - Uniaxial cross-weld creep specimen behavior
- Develop/modify individual computational "modules" within the MOOSE computational architecture to describe each physical process:
 - Dislocation glide/climb
 - Dislocation/γ' interaction
 - γ' shearing
 - Dislocation climb over y' particles
 - Dislocation looping of γ'
 - Incorporate experimental microstructures and their evolution

Project Goals and Objectives - cont.

- Experimental Testing and Validation
 - Cross-weld creep testing
 - $-\gamma$ aging for particle size evolution
 - Weld
 - Base metal
 - Threshold stress as a function of γ evolution and temperature
 - Microstructural characterization for the generation of synthetic microstructures
 - Weld
 - Base metal

Presentation Outline

- Modeling and simulation approach
 - Overview of the MOOSE architecture
 - Power law creep incorporation of dislocation climb
 - Dislocation interaction with γ ' particles
 - Particle shearing
 - Dislocation climb bypass
 - Orowan looping
- Experimental Studies supporting modeling
 - Creep tests of weld
 - Microstructural characterization and synthetic microstructure generation
 - $-\gamma$ evolution
 - Threshold stress determination as a function of temperature and γ radius
 - Weld microstructure refinement through hybrid laser arc welding

Modeling and Simulation Approach – MOOSE Architecture

- MOOSE is a finite element, multiphysics framework that simplifies the development of advanced numerical applications.
- It provides a high-level interface to sophisticated nonlinear solvers and massively parallel computational capability.
- Open Source, available at http://mooseframework.org

- Linear elasticity
- Eigenstrains
- J2 Plasticity
- Crystal plasticity

Modeling approach

- Polycrystalline length scale region consisting of base metal, HAZ and fusion region
 - FIB, EBSD, SEM Grain size, orientation, misorientation distribution
 - Reconstructed or synthetic microstructure satisfying the statistics

Diffusional creep:

Lattice site generation/annihilation model

Dislocation creep:

Dislocation density based model considering APB shearing, Orowan loop and climb

Effect of γ' shape, size, volume fraction on APB shear - Homogenized model from micromechanics simulation

Representative Volume of polycrystalline microstructure

Evolution of γ' precipitate

Dislocation density based Crystal plasticity model

 $oldsymbol{F} = oldsymbol{F}^e oldsymbol{F}^p$ Elastic and plastic deformation gradient

dislocation slip along slip planes

Plastic velocity gradient in the intermediate configuration

$$\dot{F^p}F^{p-1} = \sum_{lpha=1}^{N_S} \dot{\gamma}^a_{glide} S^{m{lpha}}_{m{0}} + \sum_{lpha=1}^{N_C} \dot{\gamma}^a_{climb} N^{m{lpha}}_{m{0}}$$

$$S_0^lpha=m_0^lpha\otimes n_0^lpha$$
 Glide direction

$$N_0^lpha=m_0^lpha\otimes m_0^lpha$$
 Climb direction

s - Slip direction m - normal in reference configuration

1

Glide model

Glide rate :
$$\dot{\gamma}^a_{glide} = (1-\phi_p) \rho^\alpha_M b v^\alpha_g$$

- ϕ_p : precipitate volume fraction. The glide is limited to the matrix channels
- ho_M : mobile dislocation density

Activation enthalpy driven flow rule

$$\bullet \quad \text{Glide Velocity} \quad v_g^\alpha = \begin{cases} l\nu \exp\left(-\frac{\Delta F_g}{KT} \left(1 - \left(\frac{|\tau_g^\alpha| - s_a^\alpha}{s_t^\alpha}\right)^p\right)^q\right) \operatorname{sgn}(\tau_g^\alpha); |\tau_g^\alpha| > s_a^\alpha \\ 0; |\tau_g^\alpha| \leq s_a^\alpha \end{cases}$$

• Resolved shear stress $au_g^lpha = T \colon m_0^{m{lpha}} \otimes n_0^{m{lpha}}$

• Athermal resistance
$$s^lpha_a= au^lpha_{disloc-disloc}=Gb\sqrt{\sum_{\zeta=1}^{N_S}q_
ho A^{lpha\zeta}
ho^\zeta}$$

O

Vacancy diffusion-induced climb model

At elevated temperatures, **bulk diffusion of vacancies** usually **dominates** the dislocation climb model. The rate of vacancy absorption is limited by the rate at which vacancies are absorbed at jogs along dislocation line.

Climb component of Peach-Koehler force $\; au_c^lpha = -b m{T} \colon m{m_0^lpha} \otimes m{m_0^lpha} \;$

Climb velocity
$$v_c^{lpha} = -rac{2\pi D}{b\log(r_{\infty}^{lpha}/r_c)}\left(c_{eq}^{lpha}-c_0
ight)$$
 $c_{eq}^{lpha}=c_0\exp\left(-rac{ au_c^{lpha}V_m}{bRT}
ight)$

Tension: **emit** vacancy, climb **down**

Compression: absorb vacancy, climb up

The mobile dislocation in contact with precipitates is $\,\phi_p
ho_M^{lpha}$

Climb rate: $\dot{\gamma}^a_{climb} = -\phi_p \rho^\alpha_M b v^\alpha_c$

Orowan Looping

Orowan looping Orowan looping occurs when the stress required for a dislocation to bow between precipitates is less than the stress required for the dislocation to penetrate precipitates

 γ ' particle bypass by dislocation looping (Alloy 617)

Stress above which looping will occur was determined by

$$au_{looping} = rac{Gb}{L_s}$$
 Spacing between precipitates $L_s = \sqrt{rac{8}{3\pi\phi_p}}r_p - r_p$

The athermal resistance is increased by the Orowan looping:

$$s_a^{\alpha} = \sqrt{\tau_{disloc-disloc}^{\alpha} + \tau_{looping}^{2}}$$

Dislocation density evolution

Dislocation density evolution $\ \dot{
ho^{\dot{lpha}}}=
ho^{\dot{lpha}}_M+\dot{
ho^{\dot{lpha}}_I}$

Evolution of mobile dislocation density

Annihilation of dislocations of opposite signs

$$\dot{\rho}_{M}^{\alpha} = \frac{k_{mul}}{b} \sqrt{\sum_{\zeta} \rho_{M}^{\zeta} |\dot{\gamma}_{glide}^{a}| - \frac{R_{c}}{b/2} \rho_{M}^{\alpha} \left(|\dot{\gamma}_{glide}^{a}| + |\dot{\gamma}_{climb}^{a}| \right)}$$

$$-\frac{\beta_{\rho}\sqrt{\rho^{\alpha}}}{b}\left(|\dot{\gamma}_{glide}^{a}|+|\dot{\gamma}_{climb}^{a}|\right)-\alpha_{D}\varphi\frac{\sqrt{\phi_{p}}}{r}|\dot{\gamma}_{glide}^{a}|+\frac{|\dot{\gamma}_{climb}^{a}|}{br}$$
 Dislocation trapping Storage of Orowan loops Mobilization of Dislocations

Evolution of immobile dislocation density

$$\dot{\rho}_{I}^{\alpha} = \frac{\beta_{\rho}\sqrt{\rho^{\alpha}}}{b} \left(|\dot{\gamma}_{glide}^{a}| + |\dot{\gamma}_{climb}^{a}| \right) + \alpha_{D}\varphi \frac{\sqrt{\phi_{p}}}{r_{p}} |\dot{\gamma}_{glide}^{a}| - \frac{|\dot{\gamma}_{climb}^{a}|}{br_{p}}$$
 Dislocation trapping Storage of Orowan loops Mobilization of Dislocations

Alloy 617 simulation results

50 grains and 150k elements

Strain-stress curve at room temperature for constant strain rate loading.

Yield strength with temperature.

Alloy 617 simulation results

Glide (not incorporated Orowan looping) and climb calibration results

750°C and 138 MPa

900°C and 26 MPa

950°C and 24 and 28.6 MPa

Experimental Studies - Creep Testing

- Creep tests will be carried out at or below the aging temperature
 - Short term creep tests support modeling and validation of modules
 - All-weld metal gage section longitudinal orientation in weld
 - Transverse weld gage section
 - Long term creep test validate simulation

PWHT

Short-term Creep Test Matrix

Specimen ID	Test Temperature, °C	Test type	Initial Stress, MPa	Orientation	Actual Rupture, hrs	Minimum Creep Rate, %/second
740-Q1-1	700	Creep rupture	413	Cross weld	639	3.2E-7
740-Q1-8	700	Creep rupture	413	Cross weld	670.8	3.2E-7
740-Q1-6	700	Creep rupture	395	Cross weld	879	2.1E-7
740-Q1-3	750	Creep rupture	350	Cross weld	184	14.6E-7
740-Q2-1	750	Creep Rupture	350	Cross weld	162.1	8.4E-7
740-Q1-5	750	Creep rupture	305	Cross weld	450	6.0E-07
740-Q2-2	750	Creep Rupture	305	Cross weld	354.3	3.2E-7
740-Q1-10	750	Creep rupture	230	Cross weld	1749.4	1.5E-7
740-Q1-4	800	Creep rupture	240	Cross weld	123.6	23.1E-7
740-Q1-2	800	Creep rupture	200	Cross weld	326.8	8.6E-7
	800	Creep rupture	138	Cross weld		
	700	Creep rupture	413	All weld metal		
740-AWM-01	750	Creep rupture	305	All weld metal	1297.5	1.1E-7
	800	Creep rupture	200	All weld metal		

Long-term Creep Validation Matrix

Test Temperature,	Specimen	Initial Stress,	Orientation	Expected Rupture	Actual Rupture	Minimum Creep	Ductility,
°C	ID	MPa		Life, hrs	Life, hrs	Rate, %/second	%
700		214	Cross weld	9700			
750	740-Q1-9	141	Cross weld	9700	11011	0.35E-7	5.3
800	740-Q1-7	83	Cross weld	9700	4680	1.1E-7	5.9

Synthetic Microstructures

- 3D volume needed for simulations
- EBSD on three orthogonal surfaces
- Reconstructed in Dream 3D
 - Morphology
 - Orientation statistics

Issues

- Scale of weld requires multiple, large data files for base and weld metal
- Increase EBSD scan step size but lose resolution – serial sectioning
- "Mesh" directly in Dream 3D using voxel representation of the grains

Dream 3D "mesh" based on voxels

γ' Aging in the Weld

Concerns:

- γ' growth during creep
- Weld metal (compositional effects?)

Goal:

• Determine growth rate constant as a function of temperature, k(T), for modeling effort:

$$r^3 - r_o^3 = k(T)t$$

Experimental:

- Temperatures: 700, 750, 800°C
- Aging times up to 10,000 hrs
- TEM with image analysis

Results:

- γ' growth behavior at 750°C follows that of Alloy 617
- More statistical variation of γ ' size in weld

γ' fraction variation in weld (Aged - 750°C, 400 hrs)

Threshold Stress Determination from Stress Drop Creep Tests

 γ 'particle bypass by dislocation climb

 γ 'particle bypass by dislocation looping

Results of Stress Drop Testing							
Aging Condition	Aging description*	Test Temperature	Threshold stress, MPa				
0	PWHT	700					
0	PWHT	750	136				
0	PWHT	800	94				
1	PWHT+4000 hrs	700	283				
1	PWHT+4000 hrs	750	98				
1	PWHT+4000 hrs	800	49				
2	PWHT+8000 hrs	700					
2	PWHT+8000 hrs	750	98				
2	PWHT+8000 hrs	800					
* Aging performed	l at 750°C						

Weld Microstructure Refinement with Hybrid Laser Arc Welding

Justification

- GTAW welds show low ductility (<10%)
- Weld grain size very large
- Hybrid Laser Arc Welds:
 - Many Economical Advantages
 - Low heat input
 - Refined microstructure
 - Increased creep ductility?

Preliminary Results

- Defect in the laser portion of welds
- Some cracking in arc portion of welds more evident at higher speeds

No Laser - 10 ipm

Weld parameters

- Arc power kW
- Laser power − 2 kW

Hybrid weld - 40 ipm

Hybrid weld - 65 ipm

Slide 18

TML1 Thomas M. Lillo, 4/4/2018

Questions

Contact Information

- Thomas Lillo:
 - Thomas.Lillo@inl.gov
 - **-** (208)526-9746
- Wen Jiang:
 - Wen.Jiang@inl.gov
 - **-** (208)526-1586