ICME for Creep of Ni-Base Superalloys in Advanced Ultra-Supercritical Steam Turbines

<u>Pengyang Zhao¹</u>, Supriyo Chakraborty¹, Mengfei Yuan¹

Yunzhi Wang¹, and Stephen Niezgoda^{1,2}

¹Department of Materials Science and Engineering, The Ohio State University ²Department of Mechanical and Aerospace Engineering, The Ohio State University

Acknowledgement

Bryce Meredig (Citrine Informatics) Chen Shen (GE-GRC)

(DE-FE0027776)

2018 NETL Annual Review Meeting for Crosscutting Research

Apr. 10-12, Pittsburgh, PA

E Department of Materials Science and Engineering

Large Data Scatter for Creep Performance

Rupture time vs. Stress/Elongation at various temperatures for Inconel 740 (Shingledecker, et. al, 2013)

- The scatter is primarily due to material variability at the microstructure level
- Microstructure variability -> Data analysis & creep model.

Current Creep Modeling of Ni-base Superalloys

Larson-Miller parameter (LMP) vs stress for various Ni-base superalloys ($C_{LM} = 20$)

- Phenomenological in nature: simple analytical model by directly linking test conditions (e.g., stress) with creep measures (e.g., rupture time)
- No microstructure information is considered (The Larson-Miller constant is insensitive to the microstructure)
- No creep mechanisms are involved
- Cannot provide feedback on optimization of improving Ni-base superalloys
- Rely on sufficiently large amount of data (not efficient)

Program Objectives

- **1. Application of advanced materials informatics for critical assessment of existing experimental data**
- 2. Critical assessment of existing modeling capabilities
- **3.** Development of new modeling capabilities that are critical but currently missing in predicting long-term creep behavior of Ni-base superalloys

Outline

 Application of machine learning methods for prediction of structure-property relationships in Nibase superalloys.

PA fast-acting, reduced-order, data-driven tool

 Development of a multiscale physics-based creep model for Ni-base superalloys

Integrated creep model at single crystal levelHomogenized creep model at polycrystal level

Outline

 Application of machine learning methods for prediction of structure-property relationships in Nibase superalloys.

PA fast-acting, reduced-order, data-driven tool

 Development of a multiscale physics-based creep model for Ni-base superalloys
 Integrated creep model at single crystal level
 Homogenized creep model at polycrystal level

What's so special about ML?

- Algorithms *built on experience* (data) rather than specific instructions of how tasks should be done.
- *Tunable parameters* that are adjusted automatically to improve the performance by adapting to previously seen data.

ML Application to Materials Science

in materials applications

ML Application to Materials Science

	Example Methods	Selected Materials Applications
Supervised learning	Regularized least squares Support vector machines Kernel ridge regression Neural networks Decision trees Genetic programming	Predict processing structure–property relationships; develop model Hamiltonians; predict crystal structures; classify crystal structures; identify descriptors
Unsupervised learning	<i>k</i> -Means clustering Mean shift theory Markov random fields Hierarchical cluster analysis Principal component analysis Cross-correlation	Analyze composition spreads from combinatorial experiments; analyze micrographs; identify descriptors; noise reduction in data sets

(Mueller, et. al, 2016)

The data challenge is currently addressed mainly by utilizing computational data

A ML Approach to Structure-Property Relations

Invertible pathway: processing – microstructure – property/performance

Data Generation using VPSC Model

Build comprehensive training data using VPSC modeling determination:

Processing, velocity gradient, strain rate, sensitivity rate, grain interactions, boundary condition, crystal system, slip/twining mode, temperature, etc

Categories	Number	Boundary conditions				
Loading condition 4		Uniaxial compression/Tension/ Simple shear / Rolling				
Normalized Voce hardening paramet	e 10 ers	$\frac{\tau}{\tau}$	$\frac{s_{1}}{s_{0}} = [0:1]; \frac{\theta_{0}^{s}}{\tau_{0}^{s}} = [0:5]$]; $\frac{\theta_1^s}{\tau_0^s} = [0:2];$		
		Randomly generate using Latin-hyper cube sampling				
Initial texture 12*5=60		12 standard texture created by MTEX;				
		Cube, Goss, brass, Copper, S1, S2, S3, Taylor, uniform, alpha fiber, beta fiber, tau fiber;				
Randomly choose 5 examples from ea				oles from each category;		
Velocity Gradient 4		[1, 0.1, 0.001, 0.0001]				
Uniform [111] [001] [011] [111] [1.8] [011] [1.8] [0.8	Cube [111] [001] [011] [15]	Goss [111] [001] [011] [011]	Brass [111]	Copper [111] [001] [011]		
S2 [001] [111] [1.5 1 0.5	53 [001] [011] [011] [011] [011] [011] [011]	Taylor [111] [001] [011] [011] [011]	α fiber [111] [001] [011] [111] [15] [011] [15]	β fiber [111] [001] [011] [1.5]	τ fiber [111] [001] [011] [11] [011] [011] [11]	

OHIO STATE Department of Materials Science and Engineering

Property Prediction using the ML tool

Calibration of the Proposed ML tool

Outline

• Application of machine learning methods for prediction of structure-property relationships in Nibase superalloys.

?A fast-acting, reduced-order, data-driven tool

 Development of a multiscale physics-based creep model for Ni-base superalloys

Integrated creep model at single crystal level
Homogenized creep model at polycrystal level

An Integrated Modeling Scheme

Multiscale, Microstructure-Sensitive, Mechanism-Informed

Outline

• Application of machine learning methods for prediction of structure-property relationships in Nibase superalloys.

?A fast-acting, reduced-order, data-driven tool

 Development of a multiscale physics-based creep model for Ni-base superalloys

Integrated creep model at single crystal level

Homogenized creep model at polycrystal level

FFT based Micromechanical Solver

Spectral (FFT) method

- Solutions are approximated by *global* Fourier series.
- Stress equilibrium is satisfied at every (image) sampling point in the *strong* form, i.e.,

$$\nabla \cdot \boldsymbol{\sigma} = \mathbf{0}$$

Lebensohn, R. A., et al. (2012). IJP.

Advantage of FFT method for this study:

- Account for complex geometry of γ/γ' microstructure
- Fast numerical implementation due to FFT algorithm
- Integration with phase-field

Finite element method

- Solutions are approximated by *localized* shape-functions
- Stress equilibrium is satisfied in over elements in the *weak* form, i.e.,

Department of Materials Science and Engineering

Phase-Field Model for γ/γ' Microstructure

Improvements

 $d\phi_i$

 $d\phi_i$

- C++, MPI parallelization
- Incorporate modulus mismatch •

$$\begin{split} E^{\text{elast}} &= \frac{1}{2} \int_{V} \left[C_{ijmn}^{0} \Delta S_{mnpq}(\mathbf{x}) C_{pqkl}^{0} - C_{ijkl}^{0} \right] \Delta \epsilon_{ij}(\mathbf{x}) \Delta \epsilon_{kl}(\mathbf{x}) dV \\ &+ \frac{1}{2} \int_{V} C_{ijkl}^{0} [\epsilon_{ij}(\mathbf{x}) + \Delta \epsilon_{ij}(\mathbf{x})] [\epsilon_{kl}(\mathbf{x}) + \Delta \epsilon_{kl}(\mathbf{x})] dV - \bar{\epsilon}_{ij} \int_{V} C_{ijkl}^{0} [\epsilon_{kl}(\mathbf{x}) + \Delta \epsilon_{kl}(\mathbf{x})] dV \\ &+ \frac{V}{2} C_{ijkl}^{0} \bar{\epsilon}_{ij} \bar{\epsilon}_{kl} - \frac{1}{2} \int \frac{d^{3}k}{(2\pi)^{3}} [\tilde{\sigma}_{ij}(\mathbf{k}) + \Delta \tilde{\sigma}_{ij}(\mathbf{k})] \Gamma_{jikl}(\mathbf{n}) [\tilde{\sigma}_{kl}(\mathbf{k}) + \Delta \tilde{\sigma}_{kl}(\mathbf{k})]^{*} \\ \frac{\delta E^{\text{elast}}}{\delta \phi_{i}} &= \frac{1}{2} C_{ijmn}^{0} \frac{d\Delta S_{mnpq}(\mathbf{x})}{d\phi_{i}} C_{pqkl}^{0} \Delta \epsilon_{ij}(\mathbf{x}) \Delta \epsilon_{kl}(\mathbf{x}) \\ &+ \left[C_{ijmn}^{0} \Delta S_{mnpq}(\mathbf{x}) C_{pqkl}^{0} - C_{ijkl}^{0} \right] \frac{d\Delta \epsilon_{ij}(\mathbf{x})}{d\phi_{i}} \Delta \epsilon_{kl}(\mathbf{x}) \\ &+ \left(\frac{d\epsilon_{ij}(\mathbf{x})}{d\phi_{i}} + \frac{d\Delta \epsilon_{ij}(\mathbf{x})}{d\phi_{i}} \right) \left[C_{ijkl}^{0} \epsilon_{kl}^{0}(\mathbf{x}) - C_{ijkl}^{0} \bar{\epsilon}_{kl}^{0} - \langle C_{mnij}^{0} \Gamma_{mnkl}(\mathbf{n}) C_{klts}^{0} \bar{\epsilon}_{ls}^{0}(\mathbf{k}) \rangle_{\mathbf{x}} - \sigma_{ij}^{\text{appl}} \right] \end{split}$$

E Department of Materials Science and Engineering

Zhao, Low, Wang, and Niezgoda IJP, 80(2016): 38

Prediction: γ' Evolution Accelerates Creep

The interplay between plasticity and microstructure:

- The γ' directional coarsening eliminates the vertical channels and widen the horizontal channels.
- The increase of horizontal channel volume fraction accelerates dislocation glide, leading to the experimentally observed high primary creep rate.

Department of Materials Science and Engineering

Prediction: Plasticity Stabilizes Wavy Interface

Prediction: Plasticity Stabilizes Wavy Interface

Geometrically necessary dislocation (GND) density

Prediction: Plasticity Stabilizes Wavy Interface

Plastic strain distribution

Wavy γ/γ' Interface in Experiments

 $\mu^{\rm diff}$ from Simulations

W/O plasticity

W/ plasticity

TE Department of Materials Science and Engineering

Prediction: Plasticity Stabilizes Small γ'

• The number of γ' particles for stress W/ plasticity is apparently larger than the other two cases.

Experiments on H282

Intragranular γ' Evolution: Static Exposure vs Creep

Creep

Courtesy of Chen Shen

Prediction: Plasticity Leads Smaller Mean γ' Size

- Adding plasticity promotes more dissolution of γ'
- Combined with the increased number density due to plasticity, the average γ' size is expected to be smaller than that during static exposure.

Outline

• Application of machine learning methods for prediction of structure-property relationships in Nibase superalloys.

?A fast-acting, reduced-order, data-driven tool

 Development of a multiscale physics-based creep model for Ni-base superalloys

Integrated creep model at single crystal level

PHomogenized creep model at polycrystal level

Homogenized Polycrystalline Creep Model

IAIE Department of Materials Science and Engineering

Homogenized simulations of H282 tensile tests

- The temperature-dependence of Voce hardening parameters can be further justified physically based on single-grain dislocation-based simulation predictions.
- Surprisingly the apparent softening can be captured by the current Voce hardening.

Department of Materials Science and Engineering

Micromechanical Fields in Tensile Tests

- The failure of capturing low-stress creep behavior using dislocation model can be overcome by the homogenized model.
- The only stress-dependent parameter is $\dot{\gamma}_0$, which may be further rationalized based on physical arguments/simulations.

Micromechanical Fields in Creep Tests

Summary & Future Work

- A fast-acting, reduced-order, data-driven tool has been developed, verified, and validated using VPSC generated data
 - Application to existing experimental data and creep life models
- Creep models of Ni-base superalloys have been developed at both single crystal and polycrystal levels
 - Application to long-term creep life prediction
 - Effects of structural heterogeneities on creep